Секция: Сельскохозяйственные науки

ПИСКАЕВА АНАСТАСИЯ ИГОРЕВНА

Аспирант кафедры «Бионанотехнология»

ФГБОУ ВО «Кемеровский технологический институт пищевой

промышленности (университет)»

Г. Кемерово, Россия

ДОЛГАНЮК ВЯЧЕСЛАВ ФЕДОРОВИЧ

Научный сотрудник кафедры «Бионанотехнология» ФГБОУ ВО «Кемеровский технологический институт пищевой промышленности (университет)»

Г. Кемерово, Россия

НОСКОВА СВЕТЛАНА ЮРЬЕВНА

Доцент кафедры «Бионанотехнология» ФГБОУ ВО «Кемеровский технологический институт пищевой промышленности (университет)»

Г. Кемерово, Россия

АНАЛИЗ СМЕСЕЙ ПУХО-ПЕРЬЕВОГО СЫРЬЯ И ПОМЕТА ДЛЯ ПОЛУЧЕНИЯ ОРГАНИЧЕСКИХ УДОБРЕНИЙ

Птицеводство является одной из быстроразвивающихся и эффективных отраслей агропромышленного комплекса в России и мире. Он характеризуется высокими ежегодными темпами роста и значительным количеством вырабатываемых отходов – ежегодно более 16 млн тонн.

Пухо-перьевые отходы и помет составляют почти 75% от общего числа отходов птицеводческой отрасли. Они представляют собой тонко-дисперсную крошку серого цвета с размером частиц от нескольких микрометров до нескольких миллиметров [1].

Традиционный способ удаления таких отходов – сжигание. Однако, это нецелесообразно ни в экологическом, ни в экономическом смыслах.

Поиски альтернативных технологий полезно утилизации отходов птицеводческого комплекса привели к развитию биотехнологий, т.е. использованию систем (консорциумов) эффективных микроорганизмов (ЭМ), способных в процессе своей жизнедеятельности перерабатывать органические и неорганические вещества, входящие в состав отходов в полезные конечные продукты - удобрения. Другими словами ЭМ обеспечивают быстрый процесс компостирования - биологического окисления органических субстратов, в результате которого происходит ферментативный гидролиз кератина – структурного белка пера [1, 2].

В качественных органических удобрениях один из компонентов выступает в роли поглотителя влаги, аммиака, диоксида углерода и без компостирования слабо разлагается (пухо-перьевое сырье), а другой – содержит микрофлору и легкоразлагающиеся азотистые и безазотистые, органические соединения (помет или субстраты его трансформации) [3, 4].

По результатам предыдущих исследований [5, 6] был составлен консорциум микроорганизмов для утилизации отходов птицефабрик в сельскохозяйственные удобрения. В состав вошли микроорганизмы Bacillus pumilus, Microbacterium terregens, Aeromonas sp., Arthrobacter globiformis, Streptomyces olivocinereus.

Исследования проводили на субстратах с варьированием содержания пуха-перьевых отходов и помета 0:1, 2:8, 5:5, 8:2, 1:0 соответственно.

Лабораторный опыт твердофазного компостирования включал послойную укладку 6 слоев перемешанной смеси субстратов с толщиной одного слоя толщиной 15 см в контейнеры. Предварительно каждый слой обрабатывали распылением консорциума микроорганизмов, находящихся в жидкой питательной среде оптимального состава. Качественные показатели компоста проверяли спустя 7, 14 и 21 сутки после начала

ферментации. В качестве контроля использовали контейнер с необработанными слоями субстратов.

Все анализы проводились в 3-х кратной повторности.

Полученное удобрение проверяли на соответствие требованиям к физическим, механическим, агрохимическим свойствам удобрений, производимых на основе помета, представленным в ГОСТ Р 53117-2008. «Удобрения органические на основе отходов животноводства. Технические условия». Результаты представлены в таблице 1.

Таблица 1 – Соответствие требованиям к физическим, механическим, агрохимическим свойствам удобрений на основе помета

Наименование показателя	Соотношение пухо-перьевых отходов и помета					Норма По ГОСТ
	0:1	2:8	5:5	8:2	1:0	
Массовая доля сухого вещества, %,	8	14	26	38	43	Не менее 8
Содержание балластных						Не более
инородных механических						
включений, % от сухого вещества,						
не более:						
- с высокой удельной массой						
(камни, щебень, металл и т.д.)	0,2	0,2	0,2	0,2	0,2	1,05
размером менее 40 мм						
- с низкой удельной массой						
(шпагат, веревка, щепа, палки и	0,5	0,5	0,5	0,4	0,3	0,5
т.д.) размером менее 150 мм						
Размер частиц удобрений, мм	25	22	23	22	20	Не более 30
Показатель активности						6,0-8,5
водородных ионов (реакция	5,5	7,5	7,0	7,0	6,5	
водной среды), рН						
Массовая доля органического						не менее
вещества, на сухое вещество, не	77	79	80	92	95	70
менее						
Массовая доля питательных						не менее
веществ в удобрении с исходной						
влажностью, %,						
- азота общего	1,2	1,5	1,9	1,7	1,5	0,4
- фосфора общего, в пересчете на	1,0	0,7	0,7	0,5	0,2	0,3
P_2O_5 - калия общего, в пересчете на K_2O	0,13	0,5	0,5	0,6	0,6	0,15

В соответствии с данными представленными в таблице 1 делаем вывод о том, что все варианты соотношений пухо-перьевых отходов и помета для производства удобрений соответствуют требованиям ГОСТ Р 53117-20 кроме соотношения 1:0 (чистый помет). Это может объясняться высоким уровнем контаминации жидкого помета патогенной микрофлорой и неспособность ЭМ полностью справиться с патогенами.

По результатам проведённых исследований установлена рациональность использования соотношения пухо-перьевое:помет как 2:8, 5:5 или 8:2, так как компосты полученные с помощью данных соотношений субстратов наиболее полно отвечают требованиям ГОСТ Р 53117-20.

Литература:

- Проценко, Е. П. Микробиологическая характеристика компостов, полученных на основе серой лесной почвы с добавлением пухоперьевой крошки / Е. П. Проценко, Н. А. Клеева, Н. В. Верховцева, Г. А. Осипов // Проблемы агрохимии и экологии. 2009. № 3. С. 11–15.
- 2. Сидоренко, О.Д.. Биологические технологии утилизации отходов животноводства / О.Д. Сидоренко, Е.В. Черданцев // М.: Изд-во МСХА, 2001 74 с.
- 3. Третьяков, Н.П. Технология переработки продуктов птицеводства // М.:Колос,1974. 240 с.
- 4. Третьяков, Н.П. Переработка продуктов птицеводства / Н.П. Третьяков, Б.Ф. Бессарабов // М.: Агропроиздат, 1985. 287 с.
- 5. Пискаева, А. И. Исследование и разработка биопрепарата для биоконверсии опасных отходов птицеводства в экологически чистое удобрение / А. И. Пискаева, А. И. Линник // Материалы IX Международной научно-практической конференции по всем наукам

- «Интеграционные процессы мировой науки в XXI веке». Казань. 2014. №10. С 161-168
- Piskaeva, A. I. Investigation of the influence of the cluster silver on microorganisms-destructors and bacteria *Escherichia coli* / A. I. Piskaeva, Yu. Yu. Sidorin, L. S. Dyshlyuk, Yu. V. Zhumaev, and A. Yu. Prosekov // Foods and Raw Materials, 2013. Vol.2 (No. 1). p. 62-66.