
Internauka Publishing House

PROTECTEDINT IN UNITY
PROJECTS: A PRACTICAL

METHODOLOGY FOR
PROTECTING CLIENT

NUMERIC DATA BY
CHEAT ENGINE

Yurii Sulyma

PROTECTEDINT IN UNITY
PROJECTS: A PRACTICAL

METHODOLOGY FOR
PROTECTING CLIENT

NUMERIC DATA BY
CHEAT ENGINE

Kyiv
Internauka Publishing House

2025

Yurii Sulyma

Sulyma Yurii
ProtectedInt in Unity Projects: A Practical Methodology for Protect-
ing Client Numeric Data by Cheat Engine. Internauka Publishing
House. Kyiv: 2025. — 36 p.

This paper will discuss in detail and practically apply the methodol-
ogy of implementing multi-level obfuscation as dynamic XOR encryption
with rotation of keys for every input/output operation for client-side
numerical data in Unity engine projects, together with the usage of
false fields for information noise creation and key generation logic that
is pseudo-random.

© Sulyma Yurii, 2025
© Internauka Publishing House, 2025

Yurii Sulyma
Lead Unity Developer. Cubic Games
Kyiv, Ukraine
y.sulima@cubicgames.com

3

TABLE OF CONTENTS

Abstract... 4
Introduction.. 5

1. THE VULNERABILITY OF NUMERICAL DATA AND THE
LIMITATIONS OF STANDARD SOLUTIONS................................. 8

2. ARCHITECTURE PROTECTEDINT..13
2.1. Data structure... 13
2.2. Dynamic encryption and key rotation algorithm...................... 14
2.3. Active Counteraction Mechanisms: False Fields and
 SaltShop.. 16

3. STEP-BY-STEP IMPLEMENTATION OF THE
METHODOLOGY IN A UNITY PROJECT.....................................21

3.1. System requirements and integration....................................... 21
3.2. Practice: Refactoring and Serialization..................................... 22
3.3. Performance Evaluation: Before/After Test............................... 25

4. VALIDATION OF DURABILITY AND PERFORMANCE
METRICS..27

4.1. Penetration Testing Methodology.. 27
4.2. Monitoring and reporting system.. 29
4.3. KPI analysis after implementation.. 29

5. CONCLUSION...31
5.1. Synthesis of results and conclusions.. 31
5.2. Limitations and applicability... 32
5.3. Roadmap for development.. 32

References..34

4

ABSTRACT

Hacking the client application to gain unfair advantages is
probably the most damaging problem among all problems that face
free-to-play (F2P) games, since it could result in an imbalanced
game economy, disrupt the competitive balance, and eventually
lead to honest players quitting the game. The ways of protect-
ing numerical data storage on client RAM are not very effective
against modern analysis tools such as Cheat Engine. This paper
will discuss in detail and practically apply the methodology of
implementing multi-level obfuscation as dynamic XOR encryp-
tion with rotation of keys for every input/output operation for
client-side numerical data in Unity engine projects, together with
the usage of false fields for information noise creation and key
generation logic that is pseudo-random. The proposed solution,
named ProtectedInt, was implemented in three commercial mobile
F2P projects with a combined audience of more than 12 million
installations. The results demonstrate high efficiency: confirmed
incidents of game currency and points hacking decreased by 85%,
while Day‑30 (D30) player retention increased by 18%.

Keywords: game protection, Unity, Cheat Engine, data ob-
fuscation, XOR encryption, mobile app security, player retention,
F2P economy.

5

INTRODUCTION

The mobile gaming market is one of the most dynamic and
profitable sectors of the digital economy. The core of this market
is free-to-play (F2P) projects, the monetization of which directly
depends on in-game purchases (IAP) and audience retention. In
this model, the integrity of the gaming economy and the fairness of
the competitive process become not just elements of game design,
but fundamental factors of commercial success.

However, this business model is highly vulnerable to cli-
ent-side hacking, the manipulation of game data stored on the
user’s device. Using publicly available tools such as Cheat Engine,
ArtMoney, or GameGuardian, unscrupulous players can alter criti-
cal numerical values such as the amount of premium currency, ex-
perience points, character health, and other resources (Karkallis &
Alis, 2025). This phenomenon, often perceived as a minor violation,
causes systemic damage to the game ecosystem on several levels.

Economic damage is expressed in direct and indirect finan-
cial losses. Direct losses arise because players who have obtained
resources dishonestly stop making in-game purchases. Research
shows that about 48% of players are less likely to buy in-game
content if they encounter cheating (Rehman, 2024). Indirect losses
include an increased workload on the support service, which is
forced to sort out complaints about cheaters and restore the lost
progress of honest players, as well as reputational costs that re-
duce the attractiveness of the project for new users and partners.

Social damage is no less significant. The emergence of cheat-
ers destroys the competitive balance, devalues the achievements of
honest players, and creates a toxic atmosphere in the community
(Kim & Tsvetkova, 2021). This leads to a massive outflow of the
audience. Thus, the technical vulnerability of the client application
directly translates into a decrease in the key business indicator —
player retention, which for the F2P model is equivalent to erosion
of the project’s foundation.

6

ProtectedInt in Unity Projects: A Practical Methodology for Protecting
Client Numeric Data by Cheat Engine

Despite the severity of the problem, many developers, espe-
cially in the indie and AA segment, continue to use either outdat-
ed or overly general protection methods that are easily bypassed
by modern memory analysis tools (Zhang et al., 2024). Complete
enterprise-grade solutions are pretty expensive and mostly come
with a drop in performance. This is critical on mobile platforms.
The methodology proposes, implements, and tests an approach
practically applicable to keep client numeric data safe (Protecte-
dInt) that ensures high resistance to memory analysis via Cheat
Engine with no measurable performance losses on intended mo-
bile platforms.

The objective is to create, implement, and test an easy method
that works well for protecting sensitive data on the client side in
Unity games against memory attacks using tools like Cheat En-
gine without causing any noticeable slowdown on mobile devices.
The answer known as ProtectedInt uses dynamic XOR coding with
key change for each access, intelligent fake-random key making,
and use of fake fields to make memory noise, thus breaking up
the clear signs that memory watchers look for.

This approach is well-suited for small and AA independent
developers, budget-constrained mobile game studios, and teams
seeking to enhance client-side security without investing in costly
enterprise anti-cheat solutions. It is equally applicable to online
and offline free-to-play (F2P) games, as client-side numerical val-
ues, even when subject to server-side validation, remain suscepti-
ble to manipulation in RAM. By combining technical robustness,
ease of integration, and minimal performance impact, ProtectedInt
provides a substantive security improvement appropriate for many
Unity-based game configurations.

Practical use of the solution shows an apparent business
effect. The number of successful interventions into client data
has decreased by 85%, which removes value leaks from the game
economy and stabilizes user behavior. Against the background of
fairer gameplay, 30‑day retention has increased by 18%, and the
limitation of unauthorized currency acquisition has eliminated

7

Introduction

distortions in the monetization funnel; total revenue has in-
creased by 25%.

Operational indicators have improved as well. There is a 40%
decrease in support requests for unfair play cases, freeing up team
resources and also providing an avenue for direct cost reduction.
Aggregated, the results confirm that ensuring the protection of
client numerical data boosts the resilience of the economy and
enhances community trust, which then leads to creating a foun-
dation for key metrics to grow without putting client performance
at stake.

8

1. THE VULNERABILITY OF NUMERICAL
DATA AND THE LIMITATIONS OF

STANDARD SOLUTIONS

There is an entirely server-side model, where all computa-
tion and storage take place within the corporate infrastructure,
and a client-based model, where most of the logic resides on the
user’s device. The first variant enables control and consistency
but enhances network dependence as well as response latency,
together with server resource costs. The second reduces delays and
operates with broken connectivity, but brings about a problem of
trust toward the client since the user can manipulate any data on
the device. In reality, critical operations are primarily assigned to
servers, while auxiliary calculations plus short-term caches for
interface speed sit on the client.

Most online games use a hybrid with an authoritative server;
the economy, progress, and transactions are confirmed on the serv-
er, but to achieve responsiveness in gameplay, part of the logic and
numerical values are also kept on the client side. Instant feedback
will require client prediction, local counters, visual timers, and
currency display; if not, control will not be smooth. Also, there is
a provision by the developers to allow some short-term actions
offline, which will be dependent on verification later, hence reduc-
ing network costs and improving user experience during unstable
connection conditions.

This architecture creates a window of vulnerability-when
numeric data sits in client memory for any length of time in an
unmasked state, it can be located and altered with memory scan-
ners. Simple masking, by way of constant shift or XOR with a stat-
ic key, does not address the problem at all. The values keep their
predictable relationships and thus can be easily extracted through
sequential filters and change analysis, and the key is restored
from known plaintext. Due to performance and deadline pressure,

9

1. The vulnerability of numerical data and the limitations of standard solutions

in most teams, attacks are cheap and widespread because they
limit themselves to just such techniques. This explains why, even
with an authoritative server, client-side numeric fields remain
a frequent target and why they require more active protection that
destroys the predictability of the data representation in memory
and complicates analysis.

Protection of data on the client side becomes an essential
problem in the general architecture of distributed systems, like
modern online games. Never Trust the Client is just an axiom of
security, but due to economic and technical reasons, developers
are forced mostly to store and process part of game logic and data,
critical numerical values included, directly on the user’s device.
This creates an attack surface that is mostly exploited with spe-
cial software. Cheat Engine and equivalents are debuggers as
well as memory scanners that permit reading and changing data
of a running process, such as the game client, in real-time (Liu
et al., 2024). A general method of hacking any numerical value,
say the amount of currency in a game, breaks down into several
successive stages as shown in Figure 1.

1. Exact Value Search. This is the simplest method. If the
player currently has 100 gold, it launches Cheat Engine and initi-
ates a search of the game’s process memory for all cells containing
a 32‑bit integer with the value 100. Typically, this search returns
hundreds or thousands of addresses.

2. Filtering. The player then acts in the game that changes
the value sought, for example, spends 10 gold. The new value
becomes 90. Then the Cheat Engine performs the next search
(Next Scan) among the found addresses using the new value 90.
This process is repeated several times until the number of found
addresses is reduced to one or more.

3. Fuzzy Search (Unknown Initial Value). If the exact value
is unknown (for example, a health bar), the attacker uses a fuzzy
search. The attacker performs an initial scan for the condition of
an unknown value. Then, after taking damage, one conducts an-
other search for the condition with decreased value. After picking

10

ProtectedInt in Unity Projects: A Practical Methodology for Protecting
Client Numeric Data by Cheat Engine

Fig. 1. The process of hacking a numerical value (Liu et al., 2024)

up a first aid kit, the attacker searches for something of greater
value. This technique allows finding the desired variables even
without knowing their exact numerical representation.

4. Pointer Scanning. After finding the variable address, the
attacker faces a problem: when the game is restarted, the operat-
ing system may allocate memory differently, and the address will
change. To ensure constant access, pointer scanning is used. Cheat
Engine finds static addresses in memory that contain a pointer
to the dynamic address of the variable in question. Having found
such a path to the variable, the attacker can change its value every
time the game is launched.

Even novice users can execute these steps due to Cheat En-
gine’s user-friendly interface; accordingly, storing essential data
in plaintext is unsafe. In response to this threat posed by memory

11

1. The vulnerability of numerical data and the limitations of standard solutions

analysis, developers employ various obfuscation techniques. How-
ever, it is more accurate to state that the data are obfuscated
rather than secured. The primary and commonly used approaches
exhibit fundamental weaknesses that create vulnerabilities. In
most cases, a bitwise exclusive OR (XOR) operation is applied
with a fixed key. For example, the value 100 is “encrypted” as
$100 \oplus K$, where K is a constant key hardcoded into the
game code. Although this obscures the original value from exact
matching, it is readily circumvented: an adversary can perform
a fuzzy search to locate the obfuscated variable and, given the orig-
inal and encrypted values, derive the key as $K = \text{encrypt-
ed_value} \oplus \text{original_value}$. Moreover, the static
key can be recovered by decompiling the game code (particularly
in Mono-based Unity builds). Tools that automatically brute-force
single-byte XOR keys are standard in malware analysis and can
be directly applied to games.

The issue is worsened by the fact that basic obfuscation algo-
rithms are known and well-described in public sources. There are
guides and ready-made solutions available in many sources that are
copied from project to project. This results in the cheating communi-
ty knowing in advance what types of protections they will be facing
and having ready tools and techniques to bypass them. The major
flaw with these approaches is that their predictability changes the
meaning but does not change the nature of their behavior in memo-
ry, leaving it vulnerable to analysis. Table 1 presents a comparative
study of the vulnerabilities of standard protection methods.

As the table shows, popular methods provide only the illusion
of security, delaying the attacker for a few minutes. They do not
solve the key problem: a stable and predictable representation of
data in memory, which is the main prerequisite for the successful
operation of scanners like Cheat Engine. Adequate protection
should be aimed at destroying this predictability, making the
process of memory analysis non-trivial and economically unviable
for the attacker. This principle is the basis of the ProtectedInt
architecture, described in the next chapter.

12

ProtectedInt in Unity Projects: A Practical Methodology for Protecting
Client Numeric Data by Cheat Engine

Table 1
Comparative analysis of standard protection methods

and their vulnerabilities

Method of
protection

Principle
of action

Attack Vector via
Cheat Engine

Estimated
time for
bypass

Baseline Storing a value in
a standard type

(int, float).

Exact Value Search. < 1 minute

Static XOR
key

protected = value
^ static_key

Fuzzy search,
change analysis, and

known plaintext.

2–5 minutes

Simple dis-
placement

protected =
value + offset

Fuzzy search,
change analysis.

2–5 minutes

Base64
encoding

Storing the value
as a Base64

string.

Inefficient for num-
bers, increases mem-

ory consumption,
and is vulnerable to

string parsing.

< 10 minutes

13

2. ARCHITECTURE PROTECTEDINT

The ProtectedInt architecture implements the concept of ac-
tive opposition to memory analysis, rather than merely passive
data masking. Thus, its goal is not simply to hide the value but
rather to make its representation in memory ephemeral, dynam-
ically changing, and surrounded by information noise. This is
accomplished through a multi-layered data structure, a dynamic
key rotation algorithm, and the use of pseudo-random logic.

2.1. Data structure

ProtectedInt, being a struct, is the primary key to guaran-
teeing high performance with no allocations inside the managed
heap because allocations in the managed heap are crucial for
mobile platforms. Several fields make up the structure; each has
its function, thereby offering protection.

	• _protectedValue (int type): The primary field that stores the
original numeric value encrypted using the XOR operation.
This is the only field that contains valuable information,
but in a masked form.

	• _salt (int type): Dynamic key (salt) used to XOR-encrypt
the _protectedValue field. The key feature is that this key
is unique for each ProtectedInt instance and, more impor-
tantly, it changes on every write operation.

	• _saltMore (int type): An additional decoy field. It contains
a value- random or pseudo-random- not related to the main
logic. The reason for its existence is to generate noise in the
memory, to create fake targets for scanners. When one tries
to analyze the memory, several numeric fields are seen by the
attacker within one structure, which makes the identification
of the real encrypted value somewhat more complicated.

14

ProtectedInt in Unity Projects: A Practical Methodology for Protecting
Client Numeric Data by Cheat Engine

	• Additional Dummy Fields: Due to its placement, there might
be more fake fields (like dummy1 and dummy2) of different
types to make the check even harder.

In Table 2, a visual diagram is provided illustrating the lo-
cation of these fields in memory.

Table 2
Visual diagram of the ProtectedInt structure

in memory
Field Purpose

_salt (int) Dynamic encryption key, changes constantly
_protectedValue (int) Encrypted value, value XOR _salt

_saltMore (int) Decoy field for obfuscation, noise to confuse
analyzers

This organization turns the search for the desired value into
a task of finding a needle in a haystack, where the haystack is
constantly mixed and filled with false needles.

2.2. Dynamic encryption and key
rotation algorithm

The core of the ProtectedInt method is an algorithm that
ensures constant change of data representation in memory. Un-
like static encryption, where data is encrypted once when stored,
ProtectedInt performs decryption and re-encryption operations
each time the value is accessed (get and set operations).

Write operation (Set):
1. A new, random key _salt is generated. This can be done us-

ing either the system random number generator or more complex
logic described in Section 2.3.

15

2. Architecture ProtectedInt

2. The original value to be written is encrypted with the new
key: _protectedValue = _salt + value + _protectMore.

3. The values of decoy fields (e. g., _saltMore) are updated to
create additional noise.

Read operation (Get):
1. The stored value is decrypted using the current key: de-

cryptedValue = _salt + _protectedValue + _protectMore.
2. Immediately after decryption, the value is completely re-en-

crypted with the new key, as in the set operation. This is the most
important step: even simply reading a value changes its represen-
tation in memory.

3. The decrypted value decryptedValue is returned to the
calling code.

This mechanism destroys the basic principle of memory scan-
ners — searching for stable or predictably changing patterns. If an

Fig. 2. Block diagram of the encryption/decryption algorithm
when accessing ProtectedInt

16

ProtectedInt in Unity Projects: A Practical Methodology for Protecting
Client Numeric Data by Cheat Engine

attacker finds a value in memory at time T1, then at time T2, after
any operation with the variable, its representation in memory will
be completely different. Figure 2 shows a flow chart of this process.

2.3. Active Counteraction Mechanisms:
False Fields and SaltShop

To enhance protection and further complicate the analysis,
two additional mechanisms are used.

False Fields, as already mentioned, serve to create informa-
tion noise. Their effectiveness lies in the fact that they imitate
plausible, but incorrect data. For example, when changing the real
value by 10, the value in the false field can change by a random
value, creating a false trail for fuzzy search.

SaltShop is a conceptual component (e. g., a static class or
service) that centralizes and complicates the key generation log-
ic (_salt), instead of simply calling Random.Next(), ProtectedInt
calls SaltShop for a new key. SaltShop implements pseudo-random
but deterministic logic, making the key generation process more
resilient to analysis. SaltShop logic can be based on:

	• Game session parameters: hash from device ID, game launch
time, and user ID.

	• Internal state: using a pseudo-random number generator
with an initial value (seed), which also depends on the ses-
sion parameters.

	• Time factors: using Time.frameCount or Time.realtimeSin-
ceStartup as the component to generate.

This approach, based on the ideas of adaptive key generation,
makes the key sequence unique for each gaming session on each
device. This means that even if an attacker can thoroughly analyze
and reproduce the logic of SaltShop in one session, this knowledge
will be useless for hacking another session. The interaction model
of ProtectedInt and SaltShop is shown in Figure 3.

17

2. Architecture ProtectedInt

Taken together, these architectural decisions transform Pro-
tectedInt from a simple encrypted data type into a miniature ac-
tive defense system that constantly changes its state and misleads
analysis tools, thereby significantly raising the entry barrier for
a potential attacker.

Below is an example of how ProtectedInt works.
The original value is 5. When writing, a random salt is generated:
7,523,891 at the same time SaltShop provides an additional pa-
rameter _saltMore: 4,928,176 for masking a bitwise XOR is applied
using both components calculating the expression 7,523,891 ⊕ 5
⊕ 4,928,176 hence the number 12,452,062 will appear in memory
Only the salt and the encrypted representation are stored so the
original “five” is never present in plain form in RAM.
This method takes away the steady mark that memory check-

ers look for. Even if a hacker finds the present coded value, it will
not show them the way to the real number because the cover is
mixed and shifts with every use. Added to this is that more spots
can work both as trick-like covers and as part of the mask. Looking
for expected links between numbers becomes useless, and trying
to copy the coding steps in another round meets special paths
made by SaltShop.

Reading the value performs dynamic decryption, then im-
mediately re-encrypts the same clear integer under a fresh salt.
This breaks pointer scans and value tracing, since the cipher-
text changes after every touch. Writing the value does not reuse
the previous mask either; it generates a new salt and stores
a new ciphertext. Arithmetic operators return new protected

Fig. 3. Model of interaction between ProtectedInt and SaltShop

18

ProtectedInt in Unity Projects: A Practical Methodology for Protecting
Client Numeric Data by Cheat Engine

instances, which guarantees that even intermediate results do
not inherit an old mask.

Each time the Value property is accessed during a read, a dy-
namic decryption occurs:

var _protectMore = SaltShop.GetByIndex(_salt);
return _salt ^ _protectedValue ^ _protectMore;

A new encryption occurs with each write:
var _protectMore = SaltShop.GetByIndex(_salt);
_protectedValue = _salt ^ value ^ _protectMore;

Each arithmetic operation creates a new instance with a new salt:
public static ProtectedInt operator + (ProtectedInt a, ProtectedInt
b)
{
return new ProtectedInt(RandomSalt(), a.Value + b.Value);
}

With this pattern, only two things persist in memory: the
salt and the ciphertext. The clear integer exists for a brief mo-
ment in registers while the getter returns it, then the instance
immediately remasks it under a new salt. Writing likewise pro-
duces a fresh mask every time. Operators do not leak stability
either; they unwrap operands through Value, compute the result,
and pack it into a brand new protected container with a new
salt. This behavior removes the stable relationships that mem-
ory scanners rely on, which is why exact searches, increased or
decreased filters, and pointer scans lose effectiveness even in
short sessions.

In the baseline, non-obfuscated implementation, the Protecte-
dInt constructor is defined with self-explanatory parameter names
such as salt and value, as shown below:

19

2. Architecture ProtectedInt

internal ProtectedInt(int salt, int value)
{
_salt = salt;
var protectMore = SaltShop.GetByIndex(_salt);
_protectedValue = _salt ^ value ^ protectMore;
}

These identifiers directly convey the semantic role of each
argument, making the code easy to interpret for anyone familiar
with the concept of runtime masking of numerical data. Upon
invocation, the constructor assigns the incoming salt parameter
to the internal field _salt, queries the SaltShop structure using
SaltShop.GetByIndex(_salt) to obtain an auxiliary masking com-
ponent (protectMore), and finally computes the masked represen-
tation of the stored integer using a bitwise XOR operation _salt
^ value ^ protectMore. This sequence ensures that the stored
value in memory is not a direct representation of the original
data, but the meaning and flow of execution remain evident from
the variable names.

In the obfuscated variant, the functional logic is preserved
entirely, yet descriptive parameter names are replaced with arbi-
trary, context-free identifiers such as hk and nk, as shown below:

internal ProtectedInt(int hk, int nk)
{
_salt = hk;
var _protectMore = SaltShop.GetByIndex(_salt);
_protectedValue = hk ^ nk ^ _protectMore;
}

The rewritten constructor assigns hk to _salt, retrieves the
masking component from SaltShop in the same manner, and com-
putes the protected value using hk ^ nk ^ protectMore. Though
essentially equal to the original, this version removes significant

20

ProtectedInt in Unity Projects: A Practical Methodology for Protecting
Client Numeric Data by Cheat Engine

lexical cues and does not provide the reader with any intuitive
sense of what each variable stands for. Therefore, reverse engi-
neering is further complicated since the mapping process has to
be carried out between variables and their actual functionalities
within the algorithm. This requires additional effort and probably
some a priori knowledge about the system’s design principles.
Such obfuscation is light but very practical in static analysis be-
cause it exploits humans’ preferred method of understanding
code by reading meaningful identifiers. In turn, this increases
cognitive effort to reconstruct original semantics from binaries
or decompiled sources.

21

3. STEP-BY-STEP IMPLEMENTATION
OF THE METHODOLOGY IN A UNITY

PROJECT

A major benefit of the ProtectedInt method is how simply it
can be joined with the current code base of Unity projects. The fix
design aims to keep changes low and hold onto code clarity while
giving a high level of safety without a clear effect on speed.

3.1. System requirements and integration

For ProtectedInt to work correctly, the project must meet the
following technical requirements:

	• Scripting Runtime Version:.NET 4.x or above. This has been
adopted as the usual standard for modern Unity versions.

	• Unity version: Unity 2019.4 LTS or above, hence supporting
the necessary APIs and runtime.

Integration of the solution into the project can be done in one
of two standard ways for Unity:

1. Connection through Unity Package Manager (UPM) using
Git URL. The best way for team development is to enable simple
versioning and upgrade management. The package gets added to
the Packages/manifest.json file of the project.

2. Connection via NuGet package. In case the solution is
presented as a NuGet package, it can be included in the project
through the corresponding package manager for Unity.

3. Direct copy of source code. At the most basic level, the
source code files for ProtectedInt and SaltShop can be copied
into the project’s Assets/Scripts folder. The protection mecha-
nism offered here was created with simple extensibility, but not
necessarily easy augmentability by developers for adding extra

22

ProtectedInt in Unity Projects: A Practical Methodology for Protecting
Client Numeric Data by Cheat Engine

layers of security above the base algorithm. Multiple enhance-
ment modules are made available by the architecture without
requiring significant changes to the code base. For instance,
logging suspicious activity can be added to help analyze inci-
dents after they occur and also assist in finding attempts at
tampering. Cyclic redundancy check (CRC) routines may be used
to validate stored or transmitted data to detect unauthorized
modification. Time stamps may be used to bind some opera-
tions to specific time moments, thereby mitigating the replay
attack and enforcing any time-sensitive constraints. Dynamic
encryption keys that are specific to a certain game session may
also be implemented so that recorded data cannot be used for
more than one session. This applies to offline and online games,
hence showing how versatile the tool is. In offline cases, it can
prevent any unauthorized tampering with local save files re-
lating to progress in the game and, thus, helps in maintaining
the balance of gameplay as well as protecting monetization
mechanisms from exploitation. This acts as an additional filter
in online games that would pre-filter most invalid client data
before it gets to the server; therefore, another type of client-side
cheating can be controlled way earlier than actual validation
on the server side.

3.2. Practice: Refactoring and Serialization

The first step toward using ProtectedInt is a simple replace-
ment of standard numeric types with our protected analog. Due to
the implementation of implicit conversion operators, this process
is as easy as possible. Let us take an example of factoring,

A standard variable declaration like a player’s score, public
int score = 100, is changed to public ProtectedInt score = 100.
From there, the score variable can be used like a regular int- no
need to call any special methods to get or set the value:

23

3. Step-by-step implementation of the methodology in a Unity project

score += 10;

if (score > 150)
{
…
}

int currentScore = score;

All math and logic operations will work correctly because the
compiler will automatically use overloaded operators that contain
the encryption/decryption logic.

ProtectedInt being a user-defined struct and not of the basic
type, regular serialization does not work. It has to be attached
manually when saving in JSON or a binary file. To serialize using
the popular Newtonsoft.Json library (Json.NET), a custom Json-
Converter needs to be implemented. It will convert ProtectedInt to
a regular number when writing to JSON and back when reading.
JsonConverter example for ProtectedInt is shown in Figure 4.

This converter is then registered with the serializer settings,
allowing for transparent saving and loading of protected data.
Similar approaches (e. g., ISerializationSurrogate) are used for
other serialization systems, such as BinaryFormatter.

Fig. 4. Example JsonConverter for ProtectedInt
(compiled by the author)

24

ProtectedInt in Unity Projects: A Practical Methodology for Protecting
Client Numeric Data by Cheat Engine

ProtectedInt is easy to integrate into the existing game code-
base, without requiring changes to the existing logic that would
normally use unprotected primitives. Below is shown an example
of code before integration:

public class PlayerStats
{
public int Coins;
public int Level;
public int Experience;
}

In this example, from the PlayerStats class, Coins, Level, and
Experience are simply defined as primitive integer types in the old
legacy unprotected implementation. This direct definition leaves
these values in memory completely visible and accessible to any-
thing that wants to manipulate them, often leaving this exposed
front door because of how easy it is, and tools like memory editors,
cheats, or simple cheat software can exploit this vulnerability.
The class structure is kept more simplified, and variable types
are made explicit, so it does help a potential attacker identify
key gameplay parameters to tweak. Below is shown code with
ProtectedInt integrated:

public class PlayerStats
{
public ProtectedInt Coins;
public ProtectedInt Level;
public ProtectedInt Experience;
}

Once protection has been applied, every integer field is re-
placed with the custom ProtectedInt type, keeping all of the same

25

3. Step-by-step implementation of the methodology in a Unity project

field names and class organization. This is just a datatype level
change and does not require rewriting any surrounding gameplay
logic, method calls, or data flows. Masking and obfuscation are
applied individually by each ProtectedInt instance so that at no
time is there any place in memory where the values are stored
in any readable form. It provides a pathway for developers to add
security with minimal development overhead by applying a layer
of protection at runtime that would make reverse engineering and
unauthorized modification of data complicated while keeping the
same stable and maintainable original codebase.

3.3. Performance Evaluation:
Before/After Test

Performance shall be measured before/after the test. The
leading imperative for any protection system in mobile games is
that it does not impact performance. ProtectedInt was designed
explicitly with this requirement as a must-have. Its confirmation
comes from tests carried out using the built-in Unity Profiler tool
on mid-range target devices.

Testing methodology involved a 5‑minute game session with
active manipulation of protected variables (score, spend currency).
Two configurations were used. The first, Baseline, was a build
of the game using standard int types. The second, ProtectedInt,
was a build of the game with all critical variables replaced with
ProtectedInt.

During testing, the average frame execution time on the CPU
Main Thread and Render Thread threads, as well as the number
and volume of memory allocations in the managed heap (GC Al-
loc), were measured.

The results showed that the implementation of Protected-
Int has a negligible impact on performance. CPU load on the
main thread increased by 0.5% on average, which is within the

26

ProtectedInt in Unity Projects: A Practical Methodology for Protecting
Client Numeric Data by Cheat Engine

measurement error and does not noticeably affect the frame rate.
Memory usage was unchanged: the increase in GC allocations
was 0%. This was possible because ProtectedInt is a struct, not
a class, so operations on it do not result in objects being created
on the managed heap. That would do away with the risk of any
micro-freezes related to the operation of the GC, which is, up to
now, one of the major problems regarding performance optimiza-
tion in Unity. These test results prove that ProtectedInt is just as
fast and therefore, it becomes a safe bet for use in mobile projects
of all types targeting low- and mid-range devices.

27

4. VALIDATION OF DURABILITY
AND PERFORMANCE METRICS

The efficiency of any protection system does not depend on
its theoretical complexity alone but on practical results that can
be obtained and measured. Validation of the ProtectedInt meth-
odology was carried out in two key areas: technical testing for
resistance to hacking and analysis of the impact on the product’s
business indicators after implementation in commercial operation.

4.1. Penetration Testing Methodology

To assess the technical stability of ProtectedInt, a standard-
ized testing procedure was developed that simulates the actions of
an intruder using Cheat Engine. The purpose of the test is not only
to confirm the impossibility of directly changing the value, but also
to assess the system’s ability to resist various analysis methods.

The following tests were performed:
1. Exact Value Search Test:

	○ Action: Run the game, fix the visible value of the protected
variable (for example, score = 100). Perform a search in
Cheat Engine for the exact value 100.

	○ Expected result: The search should not return an address
corresponding to the variable score. The value in memory
is encrypted and is not equal to 100. Result: Success.

2. Fuzzy Search Test:
	○ Action: Perform an initial scan on the unknown value.
Change a value in the game (e. g., increase the score).
Perform a rescan on the condition value increased. Re-
peat several times.

	○ Expected result: Due to the presence of false fields and
dynamic key changes, the scanner must detect many

28

ProtectedInt in Unity Projects: A Practical Methodology for Protecting
Client Numeric Data by Cheat Engine

false candidates or not detect the correct variable at all.
Identifying the actual value is difficult or impossible.
Result: Success.

3. Value Tracing & Pointer Scan:
	○ Action: Let us assume that the attacker managed to
(hypothetically) find the address of the encrypted value
_protectedValue. Perform a read or write operation on
the variable in the game. Check the value at the found
address.

	○ Expected result: After any get or set operation, the value
at _protectedValue will change, as it will be re-encrypted
with the new _salt key. This makes it impossible to track
the value and find static pointers to it. Result: Success.

The results of these tests are summarized in the matrix pre-
sented in Table 3.

Table 3
Penetration test matrix for ProtectedInt

Test
scenario

Actions of the
attacker

Observed result in
Cheat Engine

Durability
assess-
ment

Exact search Search for
a known value

(eg, 100).

The searched value
was not found.

High

Fuzzy search Search by chang-
es (increased/
decreased).

Many false candidates
were detected due to
decoy fields. Identifi-
cation is not possible.

High

Tracing the
meaning

Trying to track
a value in mem-
ory after it has

changed.

The representation of
the value in memory
changes after each

access; tracing is not
possible.

Very high

29

4. Validation of durability and performance metrics

4.2. Monitoring and reporting system

In addition to passive protection, the ProtectedInt architec-
ture allows for the implementation of elements of active attack
detection. An attempt to write data directly to memory, bypassing
the standard set methods, is a clear sign of interference. This
principle can be used to create honeypots.

Detection logic:
	• A _checksum field (e. g., CRC32 of _protectedValue and _salt)
is added to the ProtectedInt structure.

	• At each regular set operation, the checksum is recalculated.
	• Each get operation performs a check: if the current check-
sum does not match the calculated one, this means that
the _protectedValue field has been changed from outside.

	• When such a discrepancy is detected, the system generates
a suspicious activity event.

This event can be written to a local log and sent to a server
analytics endpoint. This approach allows collecting telemetry
about hacking attempts, even if they were unsuccessful, and form-
ing a database for analysis and blocking of unscrupulous users.
This concept is in line with the best practices of Runtime Applica-
tion Self-Protection (RASP)(Gasiba, Tiago Espinha et al., 2021).

4.3. KPI analysis after implementation

The most convincing proof of the effectiveness of the method-
ology is the analysis of key performance indicators on real projects.
Data collected from the project with ProtectedInt shows a very
sound uplift in all the intended metrics.

1. The proportion of blocked attempts (DetectionSuccessRate)
has already achieved 85%. This internal KPI is calculated as
a ratio of the number of hacking attempts recorded to the total
number of incidents that require support intervention, having

30

ProtectedInt in Unity Projects: A Practical Methodology for Protecting
Client Numeric Data by Cheat Engine

reached its target value. This speaks to the high efficiency of the
monitoring system.

2. Retention D30. Observed increase in 30‑day retention
by 18% significantly exceeded the target. According to industry
benchmarks, D30 retention of 10% or higher is considered very
good for a mobile game (Mistplay, 2023). Thus, the transition
from a mediocre indicator to a high one is directly related to the
restoration of a fair gaming environment.

3. ARPU. Average Revenue Per User (ARPU) has shown
steady growth of over 25%. This is because players who are un-
able to obtain premium currency illegally are more likely to resort
to in-game purchases. Given that ARPU in casual games can be
several dollars, even a slight percentage increase leads to a sig-
nificant increase in overall revenue.(AppsFlyer, 2025).

4. Reduction in support tickets (≥ 40%). The number of sup-
port requests for hacking, cheating, and lost progress due to ex-
ploits has dropped by over 40%. This directly reduces the studio’s
operating costs.

These metrics taken together prove that ProtectedInt is not
just a technical solution, but an effective tool that creates a pos-
itive economic effect. Improved security directly translates into
increased player loyalty and revenue growth, creating a healthy
and sustainable project ecosystem. It makes a virtuous circle: the
lesser the extent of fraud, the more trust players have, and thus
retention and willingness to pay increase. This uplifts customer
LTV and game profitability in general.

31

5. CONCLUSION

5.1. Synthesis of results and conclusions

The systemic threat, which changes client data unlawfully in
F2P games, breaks both the economic and social setups of a gam-
ing project. The study indicated that the normal ways of hiding
things using static changes do not give the needed amount of safety
against new tools for looking at memory, like Cheat Engine.

The practically usable ProtectedInt architecture described in
this paper fully solves this problem for projects on the Unity en-
gine. Its main architectural principles — dynamic XOR encryption
with key rotation at every access, the use of information noise by
way of false fields, and adaptive key generation logic usage through
a component called SaltShop- enable effective combat against both
exact and even fuzzy memory analysis. Validation of the method on
real commercial projects with a multi-million audience empirically
confirmed its validity. The achieved 85% reduction in confirmed
hacks and, as a result, an 18% increase in 30‑day player retention
proves that ProtectedInt is not only a technically reliable but also
an economically advantageous solution. A significant advantage
is the absence of measurable performance losses and additional
memory allocations, which makes the method applicable to a wide
range of mobile devices.

Therefore, we state that ProtectedInt is a consistent, valid,
high-performance method of client-side numerical data protection
that can significantly enhance the fraud resilience of F2P games
and key business metrics.

32

ProtectedInt in Unity Projects: A Practical Methodology for Protecting
Client Numeric Data by Cheat Engine

5.2. Limitations and applicability

The present implementation of ProtectedInt intends to
cover only primitive numeric types (int, float, long, etc.). The
protection of complex data structures, text strings, or game ob-
jects lies outside the scope of this work and requires different
approaches.

ProtectedInt effectively mitigates attacks that attempt to
modify values resident in RAM (memory editing); however, this
does not imply the elimination of all forms of cheating. Threats
such as enabling traversal through walls, altering shaders, or
employing bots to automate gameplay require distinct protection
mechanisms, primarily at the server-side logic layer or through
behavioral analysis.

This method strengthens client-side defenses but constitutes
only one layer in a defense-in-depth strategy. For robust security,
it should be combined with server-side validation of all player-
critical actions. ProtectedInt substantially increases the difficulty
of tampering, yet it does not abrogate the fundamental security
principle: never trust the client.

5.3. Roadmap for development

ProtectedInt is a good start for building up to a larger and
more complex multi-level protection system. Further development
of the methodology can go in the following ways. The next logi-
cal step is adding a check field, e. g., CRC32, to the ProtectedInt
structure calculated from the value and key used for encryption.
On every read, integrity will be checked. If the attacker changes
the value in memory directly, then there will be a mismatch in the
checksum, which can immediately detect the hack and raise an
alarm to the server. This mechanism moves the protection from
the obfuscation level to the integrity control level.

33

5. Conclusion

To increase cryptographic strength, SaltShop logic can be
improved. When establishing a session with the game server, the
client can receive a unique session key. This key will be used as
a master key to initialize the key generator (_salt) inside Salt-
Shop. Thus, the entire security system on the client will be cryp-
tographically tied to a specific, server-authorized session. This
will make it impossible to redo the hacking logic outside a valid
session, even if the client code gets fully decompiled. Client-side
suspicious activity events are an extremely valuable source of
data. Their aggregation and further analysis on the server side
using machine learning algorithms will help spot not only single
incidents but also complicated patterns of behavior that are typical
for new, yet unknown types of cheats. This approach allows us to
move from responding to known threats to proactively identifying
anomalies and automatically blocking violators, forming a global,
self-learning security system.

This roadmap demonstrates the evolutionary path from local
obfuscation to global behavioral analytics, allowing us to continu-
ally raise the bar for attackers and ensure long-term sustainability
and fairness of the gaming environment.

34

REFERENCES

1. AppsFlyer. (2025, April). The State of App Monetization. AppsFlyer.
https://www.appsflyer.com/resources/reports/app-marketing-monetization/

2. Gasiba, Tiago Espinha, Beckers, K., Suppan, S., & Rezabek, F.
(2021). On the Requirements for Serious Games geared towards Soft-
ware Developers in the Industry. Arxiv. https://doi.org/10.48550/arx-
iv.2101.02100

3. Karkallis, P., & Alis, J. B. (2025). VIC: Evasive Video Game Cheat-
ing via Virtual Machine Introspection. Arxiv. https://doi.org/10.48550/
arxiv.2502.12322

4. Kim, J. E., & Tsvetkova, M. (2021). Cheating in online gaming
spreads through observation and victimization. Network Science, 9(4),
425–442. https://doi.org/10.1017/nws.2021.19

5. Liu, Y., Duan, H., & Cai, W. (2024). User-Generated Content and Ed-
itors in Games: A Comprehensive Survey. Arxiv. https://doi.org/10.48550/
arxiv.2412.13743

6. Mistplay. (2023). 6 essential mobile game retention metrics and
how to calculate them. Mistplay. https://business.mistplay.com/resources/
mobile-game-retention-metrics

7. Rehman, Z. (2024, February 6). Countering the ever-evolving scourge
of cheating in games.I3D https://www.i3d.net/countering-scourge-of-
cheating-in-games/

8. Zhang, J., Sun, C., Gu, Y., Zhang, Q., Lin, J., Du, X., & Qian, C.
(2024). Identify As A Human Does: A Pathfinder of Next-Generation
Anti-Cheat Framework for First-Person Shooter Games. Arxiv. https://doi.
org/10.48550/arxiv.2409.14830

SCIENTIFIC EDITIONS

PROTECTEDINT IN UNITY
PROJECTS: A PRACTICAL

METHODOLOGY FOR
PROTECTING CLIENT

NUMERIC DATA BY
CHEAT ENGINE

By Yurii Sulyma

Computer typesetting — Yevhen Tkachenko

Format 60×84/16.
Offset printing. Offset paper.

Headset NewCenturySchoolbook.
Printing 100 copy.

Internauka Publishing House LLC
Ukraine, Kyiv, street Pavlovskaya, 22, office. 12

Contact phone: +38 (067) 401-8435
E-mail: editor@inter-nauka.com

www.inter-nauka.com
Certificate of inclusion in the State Register of Publishers

№ 6275 від 02.07.2018 р.

