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ABSTRACT

Hacking the client application to gain unfair advantages is 
probably the most damaging problem among all problems that face 
free-to-play (F2P) games, since it could result in an imbalanced 
game economy, disrupt the competitive balance, and eventually 
lead to honest players quitting the game. The ways of protect-
ing numerical data storage on client RAM are not very effective 
against modern analysis tools such as Cheat Engine. This paper 
will discuss in detail and practically apply the methodology of 
implementing multi-level obfuscation as dynamic XOR encryp-
tion with rotation of keys for every input/output operation for 
client-side numerical data in Unity engine projects, together with 
the usage of false fields for information noise creation and key 
generation logic that is pseudo-random. The proposed solution, 
named ProtectedInt, was implemented in three commercial mobile 
F2P projects with a combined audience of more than 12 million 
installations. The results demonstrate high efficiency: confirmed 
incidents of game currency and points hacking decreased by 85%, 
while Day‑30 (D30) player retention increased by 18%.

Keywords: game protection, Unity, Cheat Engine, data ob-
fuscation, XOR encryption, mobile app security, player retention, 
F2P economy.
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INTRODUCTION

The mobile gaming market is one of the most dynamic and 
profitable sectors of the digital economy. The core of this market 
is free-to-play (F2P) projects, the monetization of which directly 
depends on in-game purchases (IAP) and audience retention. In 
this model, the integrity of the gaming economy and the fairness of 
the competitive process become not just elements of game design, 
but fundamental factors of commercial success.

However, this business model is highly vulnerable to cli-
ent-side hacking, the manipulation of game data stored on the 
user’s device. Using publicly available tools such as Cheat Engine, 
ArtMoney, or GameGuardian, unscrupulous players can alter criti-
cal numerical values such as the amount of premium currency, ex-
perience points, character health, and other resources (Karkallis & 
Alis, 2025). This phenomenon, often perceived as a minor violation, 
causes systemic damage to the game ecosystem on several levels.

Economic damage is expressed in direct and indirect finan-
cial losses. Direct losses arise because players who have obtained 
resources dishonestly stop making in-game purchases. Research 
shows that about 48% of players are less likely to buy in-game 
content if they encounter cheating (Rehman, 2024). Indirect losses 
include an increased workload on the support service, which is 
forced to sort out complaints about cheaters and restore the lost 
progress of honest players, as well as reputational costs that re-
duce the attractiveness of the project for new users and partners.

Social damage is no less significant. The emergence of cheat-
ers destroys the competitive balance, devalues the achievements of 
honest players, and creates a toxic atmosphere in the community 
(Kim & Tsvetkova, 2021). This leads to a massive outflow of the 
audience. Thus, the technical vulnerability of the client application 
directly translates into a decrease in the key business indicator — 
player retention, which for the F2P model is equivalent to erosion 
of the project’s foundation.
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Despite the severity of the problem, many developers, espe-
cially in the indie and AA segment, continue to use either outdat-
ed or overly general protection methods that are easily bypassed 
by modern memory analysis tools (Zhang et al., 2024). Complete 
enterprise-grade solutions are pretty expensive and mostly come 
with a drop in performance. This is critical on mobile platforms. 
The methodology proposes, implements, and tests an approach 
practically applicable to keep client numeric data safe (Protecte-
dInt) that ensures high resistance to memory analysis via Cheat 
Engine with no measurable performance losses on intended mo-
bile platforms.

The objective is to create, implement, and test an easy method 
that works well for protecting sensitive data on the client side in 
Unity games against memory attacks using tools like Cheat En-
gine without causing any noticeable slowdown on mobile devices. 
The answer known as ProtectedInt uses dynamic XOR coding with 
key change for each access, intelligent fake-random key making, 
and use of fake fields to make memory noise, thus breaking up 
the clear signs that memory watchers look for.

This approach is well-suited for small and AA independent 
developers, budget-constrained mobile game studios, and teams 
seeking to enhance client-side security without investing in costly 
enterprise anti-cheat solutions. It is equally applicable to online 
and offline free-to-play (F2P) games, as client-side numerical val-
ues, even when subject to server-side validation, remain suscepti-
ble to manipulation in RAM. By combining technical robustness, 
ease of integration, and minimal performance impact, ProtectedInt 
provides a substantive security improvement appropriate for many 
Unity-based game configurations.

Practical use of the solution shows an apparent business 
effect. The number of successful interventions into client data 
has decreased by 85%, which removes value leaks from the game 
economy and stabilizes user behavior. Against the background of 
fairer gameplay, 30‑day retention has increased by 18%, and the 
limitation of unauthorized currency acquisition has eliminated 
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distortions in the monetization funnel; total revenue has in-
creased by 25%.

Operational indicators have improved as well. There is a 40% 
decrease in support requests for unfair play cases, freeing up team 
resources and also providing an avenue for direct cost reduction. 
Aggregated, the results confirm that ensuring the protection of 
client numerical data boosts the resilience of the economy and 
enhances community trust, which then leads to creating a foun-
dation for key metrics to grow without putting client performance 
at stake.
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1. THE VULNERABILITY OF NUMERICAL 
DATA AND THE LIMITATIONS OF 

STANDARD SOLUTIONS

There is an entirely server-side model, where all computa-
tion and storage take place within the corporate infrastructure, 
and a client-based model, where most of the logic resides on the 
user’s device. The first variant enables control and consistency 
but enhances network dependence as well as response latency, 
together with server resource costs. The second reduces delays and 
operates with broken connectivity, but brings about a problem of 
trust toward the client since the user can manipulate any data on 
the device. In reality, critical operations are primarily assigned to 
servers, while auxiliary calculations plus short-term caches for 
interface speed sit on the client.

Most online games use a hybrid with an authoritative server; 
the economy, progress, and transactions are confirmed on the serv-
er, but to achieve responsiveness in gameplay, part of the logic and 
numerical values are also kept on the client side. Instant feedback 
will require client prediction, local counters, visual timers, and 
currency display; if not, control will not be smooth. Also, there is 
a provision by the developers to allow some short-term actions 
offline, which will be dependent on verification later, hence reduc-
ing network costs and improving user experience during unstable 
connection conditions.

This architecture creates a window of vulnerability-when 
numeric data sits in client memory for any length of time in an 
unmasked state, it can be located and altered with memory scan-
ners. Simple masking, by way of constant shift or XOR with a stat-
ic key, does not address the problem at all. The values keep their 
predictable relationships and thus can be easily extracted through 
sequential filters and change analysis, and the key is restored 
from known plaintext. Due to performance and deadline pressure, 
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in most teams, attacks are cheap and widespread because they 
limit themselves to just such techniques. This explains why, even 
with an authoritative server, client-side numeric fields remain 
a frequent target and why they require more active protection that 
destroys the predictability of the data representation in memory 
and complicates analysis.

Protection of data on the client side becomes an essential 
problem in the general architecture of distributed systems, like 
modern online games. Never Trust the Client is just an axiom of 
security, but due to economic and technical reasons, developers 
are forced mostly to store and process part of game logic and data, 
critical numerical values included, directly on the user’s device. 
This creates an attack surface that is mostly exploited with spe-
cial software. Cheat Engine and equivalents are debuggers as 
well as memory scanners that permit reading and changing data 
of a running process, such as the game client, in real-time (Liu 
et al., 2024). A general method of hacking any numerical value, 
say the amount of currency in a game, breaks down into several 
successive stages as shown in Figure 1.

1. Exact Value Search. This is the simplest method. If the 
player currently has 100 gold, it launches Cheat Engine and initi-
ates a search of the game’s process memory for all cells containing 
a 32‑bit integer with the value 100. Typically, this search returns 
hundreds or thousands of addresses.

2. Filtering. The player then acts in the game that changes 
the value sought, for example, spends 10 gold. The new value 
becomes 90. Then the Cheat Engine performs the next search 
(Next Scan) among the found addresses using the new value 90. 
This process is repeated several times until the number of found 
addresses is reduced to one or more.

3. Fuzzy Search (Unknown Initial Value). If the exact value 
is unknown (for example, a health bar), the attacker uses a fuzzy 
search. The attacker performs an initial scan for the condition of 
an unknown value. Then, after taking damage, one conducts an-
other search for the condition with decreased value. After picking 
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Fig. 1. The process of hacking a numerical value (Liu et al., 2024)

up a first aid kit, the attacker searches for something of greater 
value. This technique allows finding the desired variables even 
without knowing their exact numerical representation.

4. Pointer Scanning. After finding the variable address, the 
attacker faces a problem: when the game is restarted, the operat-
ing system may allocate memory differently, and the address will 
change. To ensure constant access, pointer scanning is used. Cheat 
Engine finds static addresses in memory that contain a pointer 
to the dynamic address of the variable in question. Having found 
such a path to the variable, the attacker can change its value every 
time the game is launched.

Even novice users can execute these steps due to Cheat En-
gine’s user-friendly interface; accordingly, storing essential data 
in plaintext is unsafe. In response to this threat posed by memory 
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analysis, developers employ various obfuscation techniques. How-
ever, it is more accurate to state that the data are obfuscated 
rather than secured. The primary and commonly used approaches 
exhibit fundamental weaknesses that create vulnerabilities. In 
most cases, a bitwise exclusive OR (XOR) operation is applied 
with a fixed key. For example, the value 100 is “encrypted” as 
$100 \oplus K$, where $K$ is a constant key hardcoded into the 
game code. Although this obscures the original value from exact 
matching, it is readily circumvented: an adversary can perform 
a fuzzy search to locate the obfuscated variable and, given the orig-
inal and encrypted values, derive the key as $K = \text{encrypt-
ed\_value} \oplus \text{original\_value}$. Moreover, the static 
key can be recovered by decompiling the game code (particularly 
in Mono-based Unity builds). Tools that automatically brute-force 
single-byte XOR keys are standard in malware analysis and can 
be directly applied to games.

The issue is worsened by the fact that basic obfuscation algo-
rithms are known and well-described in public sources. There are 
guides and ready-made solutions available in many sources that are 
copied from project to project. This results in the cheating communi-
ty knowing in advance what types of protections they will be facing 
and having ready tools and techniques to bypass them. The major 
flaw with these approaches is that their predictability changes the 
meaning but does not change the nature of their behavior in memo-
ry, leaving it vulnerable to analysis. Table 1 presents a comparative 
study of the vulnerabilities of standard protection methods.

As the table shows, popular methods provide only the illusion 
of security, delaying the attacker for a few minutes. They do not 
solve the key problem: a stable and predictable representation of 
data in memory, which is the main prerequisite for the successful 
operation of scanners like Cheat Engine. Adequate protection 
should be aimed at destroying this predictability, making the 
process of memory analysis non-trivial and economically unviable 
for the attacker. This principle is the basis of the ProtectedInt 
architecture, described in the next chapter.
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Table 1
Comparative analysis of standard protection methods 

and their vulnerabilities

Method of 
protection

Principle  
of action

Attack Vector via 
Cheat Engine

Estimated 
time for  
bypass

Baseline Storing a value in 
a standard type 

(int, float).

Exact Value Search. < 1 minute

Static XOR 
key

protected = value 
^ static_key

Fuzzy search, 
change analysis, and 

known plaintext.

2–5 minutes

Simple dis-
placement

protected =  
value + offset

Fuzzy search, 
change analysis.

2–5 minutes

Base64 
encoding

Storing the value 
as a Base64 

string.

Inefficient for num-
bers, increases mem-

ory consumption, 
and is vulnerable to 

string parsing.

< 10 minutes
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The ProtectedInt architecture implements the concept of ac-
tive opposition to memory analysis, rather than merely passive 
data masking. Thus, its goal is not simply to hide the value but 
rather to make its representation in memory ephemeral, dynam-
ically changing, and surrounded by information noise. This is 
accomplished through a multi-layered data structure, a dynamic 
key rotation algorithm, and the use of pseudo-random logic.

2.1. Data structure

ProtectedInt, being a struct, is the primary key to guaran-
teeing high performance with no allocations inside the managed 
heap because allocations in the managed heap are crucial for 
mobile platforms. Several fields make up the structure; each has 
its function, thereby offering protection.

	• _protectedValue (int type): The primary field that stores the 
original numeric value encrypted using the XOR operation. 
This is the only field that contains valuable information, 
but in a masked form.

	• _salt (int type): Dynamic key (salt) used to XOR-encrypt 
the _protectedValue field. The key feature is that this key 
is unique for each ProtectedInt instance and, more impor-
tantly, it changes on every write operation.

	• _saltMore (int type): An additional decoy field. It contains 
a value- random or pseudo-random- not related to the main 
logic. The reason for its existence is to generate noise in the 
memory, to create fake targets for scanners. When one tries 
to analyze the memory, several numeric fields are seen by the 
attacker within one structure, which makes the identification 
of the real encrypted value somewhat more complicated.
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	• Additional Dummy Fields: Due to its placement, there might 
be more fake fields (like dummy1 and dummy2) of different 
types to make the check even harder.

In Table 2, a visual diagram is provided illustrating the lo-
cation of these fields in memory.

Table 2 
Visual diagram of the ProtectedInt structure  

in memory
Field Purpose

_salt (int) Dynamic encryption key, changes constantly
_protectedValue (int) Encrypted value, value XOR _salt

_saltMore (int) Decoy field for obfuscation, noise to confuse 
analyzers

This organization turns the search for the desired value into 
a task of finding a needle in a haystack, where the haystack is 
constantly mixed and filled with false needles.

2.2. Dynamic encryption and key  
rotation algorithm

The core of the ProtectedInt method is an algorithm that 
ensures constant change of data representation in memory. Un-
like static encryption, where data is encrypted once when stored, 
ProtectedInt performs decryption and re-encryption operations 
each time the value is accessed (get and set operations).

Write operation (Set):
1. A new, random key _salt is generated. This can be done us-

ing either the system random number generator or more complex 
logic described in Section 2.3.
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2. The original value to be written is encrypted with the new 
key: _protectedValue = _salt + value + _protectMore.

3. The values of decoy fields (e. g., _saltMore) are updated to 
create additional noise.

Read operation (Get):
1. The stored value is decrypted using the current key: de-

cryptedValue = _salt + _protectedValue + _protectMore.
2. Immediately after decryption, the value is completely re-en-

crypted with the new key, as in the set operation. This is the most 
important step: even simply reading a value changes its represen-
tation in memory.

3. The decrypted value decryptedValue is returned to the 
calling code.

This mechanism destroys the basic principle of memory scan-
ners — searching for stable or predictably changing patterns. If an 

Fig. 2. Block diagram of the encryption/decryption algorithm  
when accessing ProtectedInt



16

ProtectedInt in Unity Projects: A Practical Methodology for Protecting  
Client Numeric Data by Cheat Engine

attacker finds a value in memory at time T1, then at time T2, after 
any operation with the variable, its representation in memory will 
be completely different. Figure 2 shows a flow chart of this process.

2.3. Active Counteraction Mechanisms:  
False Fields and SaltShop

To enhance protection and further complicate the analysis, 
two additional mechanisms are used.

False Fields, as already mentioned, serve to create informa-
tion noise. Their effectiveness lies in the fact that they imitate 
plausible, but incorrect data. For example, when changing the real 
value by 10, the value in the false field can change by a random 
value, creating a false trail for fuzzy search.

SaltShop is a conceptual component (e. g., a static class or 
service) that centralizes and complicates the key generation log-
ic (_salt), instead of simply calling Random.Next(), ProtectedInt 
calls SaltShop for a new key. SaltShop implements pseudo-random 
but deterministic logic, making the key generation process more 
resilient to analysis. SaltShop logic can be based on:

	• Game session parameters: hash from device ID, game launch 
time, and user ID.

	• Internal state: using a pseudo-random number generator 
with an initial value (seed), which also depends on the ses-
sion parameters.

	• Time factors: using Time.frameCount or Time.realtimeSin-
ceStartup as the component to generate.

This approach, based on the ideas of adaptive key generation, 
makes the key sequence unique for each gaming session on each 
device. This means that even if an attacker can thoroughly analyze 
and reproduce the logic of SaltShop in one session, this knowledge 
will be useless for hacking another session. The interaction model 
of ProtectedInt and SaltShop is shown in Figure 3.



17

2. Architecture ProtectedInt

Taken together, these architectural decisions transform Pro-
tectedInt from a simple encrypted data type into a miniature ac-
tive defense system that constantly changes its state and misleads 
analysis tools, thereby significantly raising the entry barrier for 
a potential attacker.

Below is an example of how ProtectedInt works. 
The original value is 5. When writing, a random salt is generated: 
7,523,891 at the same time SaltShop provides an additional pa-
rameter _saltMore: 4,928,176 for masking a bitwise XOR is applied 
using both components calculating the expression 7,523,891 ⊕ 5 
⊕ 4,928,176 hence the number 12,452,062 will appear in memory 
Only the salt and the encrypted representation are stored so the 
original “five” is never present in plain form in RAM.
This method takes away the steady mark that memory check-

ers look for. Even if a hacker finds the present coded value, it will 
not show them the way to the real number because the cover is 
mixed and shifts with every use. Added to this is that more spots 
can work both as trick-like covers and as part of the mask. Looking 
for expected links between numbers becomes useless, and trying 
to copy the coding steps in another round meets special paths 
made by SaltShop.

Reading the value performs dynamic decryption, then im-
mediately re-encrypts the same clear integer under a fresh salt. 
This breaks pointer scans and value tracing, since the cipher-
text changes after every touch. Writing the value does not reuse 
the previous mask either; it generates a new salt and stores 
a new ciphertext. Arithmetic operators return new protected 

Fig. 3. Model of interaction between ProtectedInt and SaltShop
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instances, which guarantees that even intermediate results do 
not inherit an old mask.

Each time the Value property is accessed during a read, a dy-
namic decryption occurs:

var _protectMore = SaltShop.GetByIndex(_salt);
return _salt ^ _protectedValue ^ _protectMore;

A new encryption occurs with each write:
var _protectMore = SaltShop.GetByIndex(_salt);
_protectedValue = _salt ^ value ^ _protectMore;

Each arithmetic operation creates a new instance with a new salt:
public static ProtectedInt operator + (ProtectedInt a, ProtectedInt 
b) 
{
return new ProtectedInt(RandomSalt(), a.Value + b.Value);
}

With this pattern, only two things persist in memory: the 
salt and the ciphertext. The clear integer exists for a brief mo-
ment in registers while the getter returns it, then the instance 
immediately remasks it under a new salt. Writing likewise pro-
duces a fresh mask every time. Operators do not leak stability 
either; they unwrap operands through Value, compute the result, 
and pack it into a brand new protected container with a new 
salt. This behavior removes the stable relationships that mem-
ory scanners rely on, which is why exact searches, increased or 
decreased filters, and pointer scans lose effectiveness even in 
short sessions.

In the baseline, non-obfuscated implementation, the Protecte-
dInt constructor is defined with self-explanatory parameter names 
such as salt and value, as shown below:
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internal ProtectedInt(int salt, int value)
{
_salt = salt;
var protectMore = SaltShop.GetByIndex(_salt);
_protectedValue = _salt ^ value ^ protectMore;
}

These identifiers directly convey the semantic role of each 
argument, making the code easy to interpret for anyone familiar 
with the concept of runtime masking of numerical data. Upon 
invocation, the constructor assigns the incoming salt parameter 
to the internal field _salt, queries the SaltShop structure using 
SaltShop.GetByIndex(_salt) to obtain an auxiliary masking com-
ponent (protectMore), and finally computes the masked represen-
tation of the stored integer using a bitwise XOR operation _salt 
^ value ^ protectMore. This sequence ensures that the stored 
value in memory is not a direct representation of the original 
data, but the meaning and flow of execution remain evident from 
the variable names.

In the obfuscated variant, the functional logic is preserved 
entirely, yet descriptive parameter names are replaced with arbi-
trary, context-free identifiers such as hk and nk, as shown below:

internal ProtectedInt(int hk, int nk)
{
_salt = hk;
var _protectMore = SaltShop.GetByIndex(_salt);
_protectedValue = hk ^ nk ^ _protectMore;
}

The rewritten constructor assigns hk to _salt, retrieves the 
masking component from SaltShop in the same manner, and com-
putes the protected value using hk ^ nk ^ protectMore. Though 
essentially equal to the original, this version removes significant 
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lexical cues and does not provide the reader with any intuitive 
sense of what each variable stands for. Therefore, reverse engi-
neering is further complicated since the mapping process has to 
be carried out between variables and their actual functionalities 
within the algorithm. This requires additional effort and probably 
some a priori knowledge about the system’s design principles. 
Such obfuscation is light but very practical in static analysis be-
cause it exploits humans’ preferred method of understanding 
code by reading meaningful identifiers. In turn, this increases 
cognitive effort to reconstruct original semantics from binaries 
or decompiled sources.
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PROJECT

A major benefit of the ProtectedInt method is how simply it 
can be joined with the current code base of Unity projects. The fix 
design aims to keep changes low and hold onto code clarity while 
giving a high level of safety without a clear effect on speed.

3.1. System requirements and integration

For ProtectedInt to work correctly, the project must meet the 
following technical requirements:

	• Scripting Runtime Version:.NET 4.x or above. This has been 
adopted as the usual standard for modern Unity versions.

	• Unity version: Unity 2019.4 LTS or above, hence supporting 
the necessary APIs and runtime.

Integration of the solution into the project can be done in one 
of two standard ways for Unity:

1. Connection through Unity Package Manager (UPM) using 
Git URL. The best way for team development is to enable simple 
versioning and upgrade management. The package gets added to 
the Packages/manifest.json file of the project.

2. Connection via NuGet package. In case the solution is 
presented as a NuGet package, it can be included in the project 
through the corresponding package manager for Unity.

3. Direct copy of source code. At the most basic level, the 
source code files for ProtectedInt and SaltShop can be copied 
into the project’s Assets/Scripts folder. The protection mecha-
nism offered here was created with simple extensibility, but not 
necessarily easy augmentability by developers for adding extra 
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layers of security above the base algorithm. Multiple enhance-
ment modules are made available by the architecture without 
requiring significant changes to the code base. For instance, 
logging suspicious activity can be added to help analyze inci-
dents after they occur and also assist in finding attempts at 
tampering. Cyclic redundancy check (CRC) routines may be used 
to validate stored or transmitted data to detect unauthorized 
modification. Time stamps may be used to bind some opera-
tions to specific time moments, thereby mitigating the replay 
attack and enforcing any time-sensitive constraints. Dynamic 
encryption keys that are specific to a certain game session may 
also be implemented so that recorded data cannot be used for 
more than one session. This applies to offline and online games, 
hence showing how versatile the tool is. In offline cases, it can 
prevent any unauthorized tampering with local save files re-
lating to progress in the game and, thus, helps in maintaining 
the balance of gameplay as well as protecting monetization 
mechanisms from exploitation. This acts as an additional filter 
in online games that would pre-filter most invalid client data 
before it gets to the server; therefore, another type of client-side 
cheating can be controlled way earlier than actual validation 
on the server side.

3.2. Practice: Refactoring and Serialization

The first step toward using ProtectedInt is a simple replace-
ment of standard numeric types with our protected analog. Due to 
the implementation of implicit conversion operators, this process 
is as easy as possible. Let us take an example of factoring,

A standard variable declaration like a player’s score, public 
int score = 100, is changed to public ProtectedInt score = 100. 
From there, the score variable can be used like a regular int- no 
need to call any special methods to get or set the value:
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score += 10;

if (score > 150)
{
…
}

int currentScore = score;

All math and logic operations will work correctly because the 
compiler will automatically use overloaded operators that contain 
the encryption/decryption logic.

ProtectedInt being a user-defined struct and not of the basic 
type, regular serialization does not work. It has to be attached 
manually when saving in JSON or a binary file. To serialize using 
the popular Newtonsoft.Json library (Json.NET), a custom Json-
Converter needs to be implemented. It will convert ProtectedInt to 
a regular number when writing to JSON and back when reading. 
JsonConverter example for ProtectedInt is shown in Figure 4.

This converter is then registered with the serializer settings, 
allowing for transparent saving and loading of protected data. 
Similar approaches (e. g., ISerializationSurrogate) are used for 
other serialization systems, such as BinaryFormatter.

Fig. 4. Example JsonConverter for ProtectedInt  
(compiled by the author)
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ProtectedInt is easy to integrate into the existing game code-
base, without requiring changes to the existing logic that would 
normally use unprotected primitives. Below is shown an example 
of code before integration:

public class PlayerStats
{
public int Coins;
public int Level;
public int Experience;
}

In this example, from the PlayerStats class, Coins, Level, and 
Experience are simply defined as primitive integer types in the old 
legacy unprotected implementation. This direct definition leaves 
these values in memory completely visible and accessible to any-
thing that wants to manipulate them, often leaving this exposed 
front door because of how easy it is, and tools like memory editors, 
cheats, or simple cheat software can exploit this vulnerability. 
The class structure is kept more simplified, and variable types 
are made explicit, so it does help a potential attacker identify 
key gameplay parameters to tweak. Below is shown code with 
ProtectedInt integrated:

public class PlayerStats
{
public ProtectedInt Coins;
public ProtectedInt Level;
public ProtectedInt Experience;
}

Once protection has been applied, every integer field is re-
placed with the custom ProtectedInt type, keeping all of the same 
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3. Step-by-step implementation of the methodology in a Unity project

field names and class organization. This is just a datatype level 
change and does not require rewriting any surrounding gameplay 
logic, method calls, or data flows. Masking and obfuscation are 
applied individually by each ProtectedInt instance so that at no 
time is there any place in memory where the values are stored 
in any readable form. It provides a pathway for developers to add 
security with minimal development overhead by applying a layer 
of protection at runtime that would make reverse engineering and 
unauthorized modification of data complicated while keeping the 
same stable and maintainable original codebase.

3.3. Performance Evaluation:  
Before/After Test

Performance shall be measured before/after the test. The 
leading imperative for any protection system in mobile games is 
that it does not impact performance. ProtectedInt was designed 
explicitly with this requirement as a must-have. Its confirmation 
comes from tests carried out using the built-in Unity Profiler tool 
on mid-range target devices.

Testing methodology involved a 5‑minute game session with 
active manipulation of protected variables (score, spend currency). 
Two configurations were used. The first, Baseline, was a build 
of the game using standard int types. The second, ProtectedInt, 
was a build of the game with all critical variables replaced with 
ProtectedInt.

During testing, the average frame execution time on the CPU 
Main Thread and Render Thread threads, as well as the number 
and volume of memory allocations in the managed heap (GC Al-
loc), were measured.

The results showed that the implementation of Protected-
Int has a negligible impact on performance. CPU load on the 
main thread increased by 0.5% on average, which is within the 



26

ProtectedInt in Unity Projects: A Practical Methodology for Protecting  
Client Numeric Data by Cheat Engine

measurement error and does not noticeably affect the frame rate. 
Memory usage was unchanged: the increase in GC allocations 
was 0%. This was possible because ProtectedInt is a struct, not 
a class, so operations on it do not result in objects being created 
on the managed heap. That would do away with the risk of any 
micro-freezes related to the operation of the GC, which is, up to 
now, one of the major problems regarding performance optimiza-
tion in Unity. These test results prove that ProtectedInt is just as 
fast and therefore, it becomes a safe bet for use in mobile projects 
of all types targeting low- and mid-range devices.
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4. VALIDATION OF DURABILITY  
AND PERFORMANCE METRICS

The efficiency of any protection system does not depend on 
its theoretical complexity alone but on practical results that can 
be obtained and measured. Validation of the ProtectedInt meth-
odology was carried out in two key areas: technical testing for 
resistance to hacking and analysis of the impact on the product’s 
business indicators after implementation in commercial operation.

4.1. Penetration Testing Methodology

To assess the technical stability of ProtectedInt, a standard-
ized testing procedure was developed that simulates the actions of 
an intruder using Cheat Engine. The purpose of the test is not only 
to confirm the impossibility of directly changing the value, but also 
to assess the system’s ability to resist various analysis methods.

The following tests were performed:
1. Exact Value Search Test:

	○ Action: Run the game, fix the visible value of the protected 
variable (for example, score = 100). Perform a search in 
Cheat Engine for the exact value 100.

	○ Expected result: The search should not return an address 
corresponding to the variable score. The value in memory 
is encrypted and is not equal to 100. Result: Success.

2. Fuzzy Search Test:
	○ Action: Perform an initial scan on the unknown value. 
Change a value in the game (e. g., increase the score). 
Perform a rescan on the condition value increased. Re-
peat several times.

	○ Expected result: Due to the presence of false fields and 
dynamic key changes, the scanner must detect many 
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false candidates or not detect the correct variable at all. 
Identifying the actual value is difficult or impossible. 
Result: Success.

3. Value Tracing & Pointer Scan:
	○ Action: Let us assume that the attacker managed to 
(hypothetically) find the address of the encrypted value 
_protectedValue. Perform a read or write operation on 
the variable in the game. Check the value at the found 
address.

	○ Expected result: After any get or set operation, the value 
at _protectedValue will change, as it will be re-encrypted 
with the new _salt key. This makes it impossible to track 
the value and find static pointers to it. Result: Success.

The results of these tests are summarized in the matrix pre-
sented in Table 3.

Table 3 
Penetration test matrix for ProtectedInt

Test 
scenario

Actions of the 
attacker

Observed result in 
Cheat Engine

Durability 
assess-
ment

Exact search Search for 
a known value 

(eg, 100).

The searched value 
was not found.

High

Fuzzy search Search by chang-
es (increased/
decreased).

Many false candidates 
were detected due to 
decoy fields. Identifi-
cation is not possible.

High

Tracing the 
meaning

Trying to track 
a value in mem-
ory after it has 

changed.

The representation of 
the value in memory 
changes after each 

access; tracing is not 
possible.

Very high
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4. Validation of durability and performance metrics

4.2. Monitoring and reporting system

In addition to passive protection, the ProtectedInt architec-
ture allows for the implementation of elements of active attack 
detection. An attempt to write data directly to memory, bypassing 
the standard set methods, is a clear sign of interference. This 
principle can be used to create honeypots.

Detection logic:
	• A _checksum field (e. g., CRC32 of _protectedValue and _salt) 
is added to the ProtectedInt structure.

	• At each regular set operation, the checksum is recalculated.
	• Each get operation performs a check: if the current check-
sum does not match the calculated one, this means that 
the _protectedValue field has been changed from outside.

	• When such a discrepancy is detected, the system generates 
a suspicious activity event.

This event can be written to a local log and sent to a server 
analytics endpoint. This approach allows collecting telemetry 
about hacking attempts, even if they were unsuccessful, and form-
ing a database for analysis and blocking of unscrupulous users. 
This concept is in line with the best practices of Runtime Applica-
tion Self-Protection (RASP)(Gasiba, Tiago Espinha et al., 2021).

4.3. KPI analysis after implementation

The most convincing proof of the effectiveness of the method-
ology is the analysis of key performance indicators on real projects. 
Data collected from the project with ProtectedInt shows a very 
sound uplift in all the intended metrics.

1. The proportion of blocked attempts (DetectionSuccessRate) 
has already achieved 85%. This internal KPI is calculated as 
a ratio of the number of hacking attempts recorded to the total 
number of incidents that require support intervention, having 
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reached its target value. This speaks to the high efficiency of the 
monitoring system.

2. Retention D30. Observed increase in 30‑day retention 
by 18% significantly exceeded the target. According to industry 
benchmarks, D30 retention of 10% or higher is considered very 
good for a mobile game (Mistplay, 2023). Thus, the transition 
from a mediocre indicator to a high one is directly related to the 
restoration of a fair gaming environment.

3. ARPU. Average Revenue Per User (ARPU) has shown 
steady growth of over 25%. This is because players who are un-
able to obtain premium currency illegally are more likely to resort 
to in-game purchases. Given that ARPU in casual games can be 
several dollars, even a slight percentage increase leads to a sig-
nificant increase in overall revenue.(AppsFlyer, 2025).

4. Reduction in support tickets (≥ 40%). The number of sup-
port requests for hacking, cheating, and lost progress due to ex-
ploits has dropped by over 40%. This directly reduces the studio’s 
operating costs.

These metrics taken together prove that ProtectedInt is not 
just a technical solution, but an effective tool that creates a pos-
itive economic effect. Improved security directly translates into 
increased player loyalty and revenue growth, creating a healthy 
and sustainable project ecosystem. It makes a virtuous circle: the 
lesser the extent of fraud, the more trust players have, and thus 
retention and willingness to pay increase. This uplifts customer 
LTV and game profitability in general.
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5. CONCLUSION

5.1. Synthesis of results and conclusions

The systemic threat, which changes client data unlawfully in 
F2P games, breaks both the economic and social setups of a gam-
ing project. The study indicated that the normal ways of hiding 
things using static changes do not give the needed amount of safety 
against new tools for looking at memory, like Cheat Engine.

The practically usable ProtectedInt architecture described in 
this paper fully solves this problem for projects on the Unity en-
gine. Its main architectural principles — dynamic XOR encryption 
with key rotation at every access, the use of information noise by 
way of false fields, and adaptive key generation logic usage through 
a component called SaltShop- enable effective combat against both 
exact and even fuzzy memory analysis. Validation of the method on 
real commercial projects with a multi-million audience empirically 
confirmed its validity. The achieved 85% reduction in confirmed 
hacks and, as a result, an 18% increase in 30‑day player retention 
proves that ProtectedInt is not only a technically reliable but also 
an economically advantageous solution. A significant advantage 
is the absence of measurable performance losses and additional 
memory allocations, which makes the method applicable to a wide 
range of mobile devices.

Therefore, we state that ProtectedInt is a consistent, valid, 
high-performance method of client-side numerical data protection 
that can significantly enhance the fraud resilience of F2P games 
and key business metrics.
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5.2. Limitations and applicability

The present implementation of ProtectedInt intends to 
cover only primitive numeric types (int, float, long, etc.). The 
protection of complex data structures, text strings, or game ob-
jects lies outside the scope of this work and requires different 
approaches.

ProtectedInt effectively mitigates attacks that attempt to 
modify values resident in RAM (memory editing); however, this 
does not imply the elimination of all forms of cheating. Threats 
such as enabling traversal through walls, altering shaders, or 
employing bots to automate gameplay require distinct protection 
mechanisms, primarily at the server-side logic layer or through 
behavioral analysis.

This method strengthens client-side defenses but constitutes 
only one layer in a defense-in-depth strategy. For robust security, 
it should be combined with server-side validation of all player-
critical actions. ProtectedInt substantially increases the difficulty 
of tampering, yet it does not abrogate the fundamental security 
principle: never trust the client.

5.3. Roadmap for development

ProtectedInt is a good start for building up to a larger and 
more complex multi-level protection system. Further development 
of the methodology can go in the following ways. The next logi-
cal step is adding a check field, e. g., CRC32, to the ProtectedInt 
structure calculated from the value and key used for encryption. 
On every read, integrity will be checked. If the attacker changes 
the value in memory directly, then there will be a mismatch in the 
checksum, which can immediately detect the hack and raise an 
alarm to the server. This mechanism moves the protection from 
the obfuscation level to the integrity control level.
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5. Conclusion

To increase cryptographic strength, SaltShop logic can be 
improved. When establishing a session with the game server, the 
client can receive a unique session key. This key will be used as 
a master key to initialize the key generator (_salt) inside Salt-
Shop. Thus, the entire security system on the client will be cryp-
tographically tied to a specific, server-authorized session. This 
will make it impossible to redo the hacking logic outside a valid 
session, even if the client code gets fully decompiled. Client-side 
suspicious activity events are an extremely valuable source of 
data. Their aggregation and further analysis on the server side 
using machine learning algorithms will help spot not only single 
incidents but also complicated patterns of behavior that are typical 
for new, yet unknown types of cheats. This approach allows us to 
move from responding to known threats to proactively identifying 
anomalies and automatically blocking violators, forming a global, 
self-learning security system.

This roadmap demonstrates the evolutionary path from local 
obfuscation to global behavioral analytics, allowing us to continu-
ally raise the bar for attackers and ensure long-term sustainability 
and fairness of the gaming environment.
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