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Summary. This paper examines how the topological characteristics of 

knowledge graphs affect the performance of Retrieval-Augmented Generation 

(RAG) systems built atop large language models (LLMs). As LLM 

“hallucinations” remain a critical challenge, integrating structured knowledge 

via graph representations promises to improve response accuracy. We set out to 

identify which graph-topology metrics and their combinations most strongly 

influence RAG effectiveness, and to quantify their effects on both answer quality 

and system throughput. By surveying and comparing existing studies, we 

demonstrate that an optimally structured graph—when paired with hybrid 

indexing—yields higher answer precision without increasing the LLM’s 

contextual load, outperforming traditional RAG approaches. Our findings will be 

of interest to AI researchers and engineers leveraging LLMs and graph databases 

for high-precision RAG workflows, as well as architects of advanced question-

answering and summarization platforms who seek an ideal trade-off between 

semantic richness and computational efficiency. 
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Introduction. Large language models (LLMs) have revolutionized natural 

language understanding and generation in recent years. Yet they remain prone to 
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so-called “hallucinations,” producing plausible but incorrect statements, and often 

lack up-to-date domain knowledge. Without grounding in external knowledge 

sources, LLMs are vulnerable to factual errors and outdated information, 

underscoring the need to integrate dedicated knowledge stores to boost answer 

accuracy. In the e-commerce and retail sectors, the accuracy of product 

information representation, personalization of commercial offers, relevance of 

catalog search results, and speed of handling customer requests are key factors 

that directly affect conversion rates and the cultivation of long-term customer 

loyalty. However, traditional data-processing and analysis methods typically lack 

the scalability and adaptability needed to manage high volumes of information 

and complex interrelationships. In this context, the Graph-RAG architecture 

emerges as a promising solution for a wide array of challenges—from intelligent 

search and recommendation-system development to the automation of customer 

support and in-depth analysis of user intent. 

This paper aims to fill that gap by analyzing how specific graph-topology 

parameters, alone and in combination, govern RAG effectiveness.  

Our central hypothesis is that selecting the right mix of topological 

features—whether extracting shortest paths or k-hop subgraphs, leveraging hybrid 

“graph + vector” indexes, or enabling incremental updates—can substantially 

raise answer accuracy and coverage without increasing the LLM’s contextual 

footprint compared to conventional RAG pipelines. 

Materials and methods. A foundational thread in this line of work 

emphasizes adaptive, graph-aware retrieval. Chen J. et al. [6] and later Chen R. 

[1] argue for models that dynamically traverse knowledge graphs to fetch domain 

facts in real time, thereby anchoring generated text firmly in structured 

information. In a related survey, Guo and Zhao [13] review generative techniques 

for crafting graph topologies themselves, highlighting how design-time graph 

structure impacts downstream retrieval. 
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Beyond retrieval, several studies investigate end-to-end architectures for 

graph-enhanced RAG. Jiang X. et al. [2] introduce Ragraph, a unified framework 

that trains over graph embeddings and retrieval signals to elevate both extraction 

and generation quality. He X. et al. [10] propose G-Retriever, a method that 

refines graph comprehension for question answering, demonstrating significant 

gains in graph-based reasoning. 

Wang Y. et al. [12] further show that tailoring retrieval to key topological 

metrics—such as node centrality and subgraph connectivity—yields more 

accurate and coherent text outputs. Bahr L. et al. [3] use knowledge graphs to trace 

faults in industrial workflows, while Oh J. H. et al. [14] employ synthetic brain 

networks to pinpoint disease markers. Zhang C. et al. [11] leverage graph neural 

nets to inform architectural design decisions, illustrating the broad applicability 

of graph-enriched generation. 

To simplify graph use in RAG, several teams have built modular toolkits. 

Rani M. et al. [7] add a “robust retrieval” layer that selects search strategies based 

on graph density. Ngangmeni J. and Rawat D. B. [8] release GraphRAG, an out-

of-the-box wrapper that auto-constructs a literature graph and highlights pivotal 

citations. Edge D. et al. [9] apply graph-augmented summarization to produce 

concise, query-focused abstracts, showing that global graph metrics boost 

coherence. 

Datasets and benchmarks have also evolved to test graph-RAG resilience. 

Yu W. et al. [4] present IFQA, an open QA corpus with counterfactual twists that 

stress-test systems’ ability to navigate alternate graph topologies. Sun H., Bedrax-

Weiss T., and Cohen W. W. [5] demonstrate iterative retrieval cycles across both 

knowledge bases and text, laying groundwork for multi-hop graph strategies. 

Existing research in the Graph-RAG domain primarily focuses on general 

methods for improving accuracy [1, 2, 6] or on narrowly specialized application 

scenarios such as error analysis [3] and medical diagnosis [14]. However, a clear 

gap exists in the systematic investigation of these technologies’ potential 
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specifically for eCommerce tasks. In particular, it is necessary to analyze how 

different knowledge-graph topologies affect a Graph-RAG system’s ability to 

generate personalized product recommendations and to provide detailed, context-

dependent responses to complex product queries.  

Results and discussion. When integrating knowledge graphs (KG) into a 

RAG system, the graph’s structure is key. It defines how knowledge is stored, 

indexed, and updated. Typically, KG uses an entity-relation graph composed of 

entity nodes and relation edges, which model domain semantics. This works well 

for logical inference across multiple steps. But, as the graph grows denser, scaling 

issues arise with deep traversal and indexing [3, 12]. A Document-Structure KG 

(DSG) addresses this by considering text fragments as nodes and edges that reflect 

semantic proximity. For clarity, the key characteristics are summarized in Table 

1. 

Table 1 
Key types of knowledge graphs and their topological characteristics 

KG 
Type 

Nodes / 
Edges 

Topology Pros Cons An example of an application in e-
Commerce 

Entity
–
Relati
on 

diverse 
entities; 
1:1, 1:N, 
N:M 
relations 

heterogen
eous, 
medium 
density 

clear 
semantics; 
supports 
multi-hop 
inference 

search 
complexity 
grows in 
large graphs 

modeling a product catalog of thousands 
of SKUs with their attributes, categories, 
and brands, as well as relations between 
products (e.g., “frequently bought 
together,” “similar products”) and 
customer data (purchase histories, 
preferences) for personalized 
recommendations 

Docu
ment-
Struct
ure 

text 

fragme

nts; 

edges ≈ 

contex

tual 

similar

ity 

homogen
eous, 
shallow 

simple to 
build; low 
indexing 
cost 

loses fine-
grained 
semantic 
connections 

building a graph from an extensive corpus 
of customer reviews and product 
overviews—nodes represent individual 
reviews or their semantic segments, edges 
denote semantic similarity or shared 
aspects (e.g., “camera quality,” “battery 
life”), enabling rapid retrieval of relevant 
opinions for specific user queries 

Comm
unity-

communit
y nodes; 

wide & 
shallow 

drastically 
reduces 

no detail 
within 

capturing behavioral data for large user 
groups (e.g., “shoppers interested in eco-
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KG 
Type 

Nodes / 
Edges 

Topology Pros Cons An example of an application in e-
Commerce 

Summ
ary 

inter-
communit
y edges 

prompt 
context 
size 

aggregated 
communities 

friendly products”) or aggregated 
characteristics of product categories to 
identify trends and inform broad 
marketing strategies 

Hetero
/Dyna
mic 
KG 

multi-
typed 
nodes/edg
es; 
metadata 

evolving 
topology 

flexible 
updates; 
rich 
semantics 

high 
complexity 
in 
management 
and indexing 

modeling a continuously updated catalog 
with diverse product types and user 
interactions (views, purchases, reviews) to 
deliver real-time, up-to-date 
recommendations and search results 

 
When constructing KGs for RAG systems, topology dictates the trade-off 

between semantic expressivity and computational efficiency. Some RAG methods 

employ native graph-traversal algorithms (BFS/DFS) without preliminary 

vectorization: while semantically exact, these traversals become prohibitively 

slow on graphs exceeding 10⁶ nodes. 

Hybrid schemes combine a “graph” index for structural queries with a 

“vector” index for textual attributes, balancing precision and performance. In such 

architectures, new nodes and edges are simply appended to the native graph index, 

and only the new elements require embedding. This design supports real-time KG 

updates without full re-indexing. 

When integrating knowledge graphs into RAG systems, it is essential to 

choose the right level of semantic and structural granularity for the entities you 

extract, and to formalize the extraction process itself—from path-finding 

algorithms and pattern templates to methods for aggregating contextual links. The 

amount of detail in the extracted subgraph directly determines both the volume 

and semantic richness of the context passed to the LLM, which in turn has a direct 

impact on the accuracy and completeness of the system’s answers [14]. 

At the most minimal granularity, only individual entities or single edges are 

retrieved. This approach delivers extremely high throughput—often O(1)–O(log 

N) in a vector index—while transmitting very little data, but it cannot capture 
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complex inter-entity relationships. An example of this is PullNet [5, 8], which 

operates purely on entity retrieval for straightforward question answering tasks. 

Table 2 illustrates the main levels of extraction granularity in Graph-RAG 

systems. 

Table 2 

The main levels of extraction granularity in Graph-RAG systems 

Granula
rity 

Description Typical Use Cases Complexity 

Nodes / 
edges 

Individual 
entities or 
single edges 

Fact retrieval: obtaining a specific product attribute 
(price, stock availability); fact checking (e.g., “Is 
Phone X waterproof?”) 

O(1)–O(log N) 
(vector lookup) 

Triples Single facts 
⟨h,r,t⟩ 

One‐step question answering (e.g., “Which 
smartphones support 5G?” “What material is this 
bag made of?”) 

O(N) 

Paths Sequential 
chains of 
node–edge–
node 

Multi‐hop reasoning: finding products by complex 
criteria (“a laptop for a designer with a > 15″ 
screen, > 16 GB RAM, and an NVIDIA GPU”); 
analyzing a user’s click sequence to infer intent 

NP-hard 

Subgraph
s (k-hop) 

k-radius 
neighborhood 
around a node 

Summarization and complex QA; personalized 
recommendation generation (“Since you viewed 
product A and purchased product B, you may like 
product C, which is often bought with B and shares 
attributes with A”); comparative product analysis 

O(Dᵏ) 

 
When processing a client query such as “Recommend a good gaming phone 

under $500” the local retrieval layer concentrates on nodes corresponding to 

gaming‐specific attributes—high‐performance processor, sufficient RAM, and a 

high refresh‐rate display—while ensuring each candidate meets the price 

constraint. The global analysis layer aggregates user ratings to pinpoint models 

with the strongest positive trend in gamer satisfaction. The hybrid approach 

implemented in LightRAG [11, 13] then combines this initial extraction of key 

entities (phone models, gaming specifications, and price range) with context 

expansion through the integration of relevant user reviews and expert evaluations, 

thereby delivering a comprehensive solution for selecting the optimal product. 
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Depending on the research goal and the desired precision of information 

retrieval from graph indexes, three fundamental workflows are generally 

distinguished. The simplest, one-shot retrieval, issues a direct query against a 

vector or graph index without any downstream filtering. This delivers very low 

latency but can return irrelevant results [2; 7]. 

To improve precision, multistage retrieval appends ranking or pruning steps 

to the raw hit set. GraphRAG [9], for instance, post-processes retrieved candidates 

into ordered “community summaries” via a large language model. Likewise, 

GRAG [1] applies graph-neural-network masking over the extracted subgraph to 

eliminate low-relevance nodes. A more sophisticated pipeline, G-Retriever [10], 

first selects pivotal nodes and edges, then synthesizes an optimal Steiner subgraph 

around them. 

Table 3 summarizes these graph-fragment transformation and context-

enhancement techniques. 

Table 3 

Methods of Graph Fragment Transformation and Context Enhancement 

[1; 2; 4; 6] 

Method Category Description Example 
Implementations 

Serial numbering 
and direct 
verbalization 

Conversion Assign indexes + textual attributes to 
convey order and basic context 

G-Retriever 

Node sequences Conversion Linear chains of nodes and relations 
for multi-hop reasoning 

GraphChain-of-
Thought; ToG 

Embedding text 
attributes 

Conversion Include full entity/relation descriptions 
(key–value) in the prompt 

LightRAG; KGP 

Subgraph 
summarization 

Conversion LLM-generated summaries of 
communities or k-hop subgraphs 

GraphRAG,  

Hierarchical 
descriptions (tree 
traversal) 

Conversion Nested text structure: root → 
neighbors → … 

GRAG 
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Method Category Description Example 
Implementations 

Multi-stage ranking 
and filtering 

Context 
enhancement 

Generate answers per subgraph, rank 
by LLM score, pick top k 

GraphRAG 

Soft prompts via 
GNN embeddings 

Context 
enhancement 

Prepend learnable GNN embeddings 
before the text without changing the 
LLM itself 

G-Retriever; 
GRAG 

Masking low-
relevance elements 

Context 
enhancement 

Use GNN to hide nodes/edges deemed 
irrelevant before generation 

GRAG 

 
However, it faces the following limitations: 1) Dependence on the 

completeness and freshness of the underlying knowledge graph—otherwise, 

semantic search accuracy and recommendation quality degrade; 2) High 

computational cost and latency when extracting deep subgraphs (k-hop), which 

can impair response times in real-world e-commerce settings; 3) Complexity of 

integrating and maintaining the graph infrastructure, requiring substantial 

resources for updates, monitoring, and version coordination; 4) Limited 

transparency of the model’s internal decision logic, making it difficult to interpret 

results or diagnose incorrect behavior and necessitating additional auditing and 

validation mechanisms. 

Conclusion. This paper has examined how the topological characteristics 

of knowledge graphs impact the performance of Retrieval-Augmented Generation 

systems. Our findings demonstrate that Graph-RAG architectures deliver more 

accurate and reliable answers—significantly reducing hallucination risks and 

offering richer semantic understanding of queries. At the same time, we have 

identified key challenges, notably: Scalability when handling dynamic or highly 

heterogeneous graph structures; Chunking strategies for multimodal inputs, where 

existing methods may not yield optimal context granularity; Dependence on the 

underlying LLM and embedding model, which can constrain the overall 

robustness and generality of the approach. 
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