
Internauka Publishing House

Anastasiia Perih



INTEGRATED METHODOLOGY 
FOR ENHANCING WEB  

APPLICATION MONITORING: 
Predictive Analytics for  

Error Reduction and  
Accelerated Diagnostics

Kyiv
Internauka Publishing House

2025

Anastasiia Perih



Anastasiia Perih
Integrated Methodology for Enhancing Web Application Moni-
toring: Predictive Analytics for Error Reduction and Accelerated 
Diagnostics: monograph. Internauka Publishing House. Kyiv: 
2025. 70 p.

The monograph introduces and substantiates an Integrated Pre-
dictive Analytics Methodology (IPAM) designed to enhance the efficiency 
of web-application monitoring by anticipating failures, reducing error 
rates, and accelerating diagnostic processes. 

© Anastasiia Perih, 2025
© Internauka Publishing House, 2025



3

TABLE OF CONTENTS

Preface ................................................................................................... 5
About the Author ................................................................................. 6
Introduction.......................................................................................... 7

CHAPTER 1. ANALYSIS OF CURRENT SOLUTIONS ..............11
1.1. Evolution of Web- Application Monitoring: From Reactive to
       Observability .............................................................................. 11
1.2. Modern Monitoring and Observability Tools and Their 
       Limitations ................................................................................. 13
1.3. Predictive Analytics and Machine Learning in Monitoring: 
       State of Research ....................................................................... 15
1.4. AI-Driven Signal Correlation and Root- Cause Analysis .......... 19

CHAPTER 2. FORMULATION OF THE INTEGRATED 
METHODOLOGY (IPAM) .................................................................21

2.1. Requirements for Proactive Web- Application Monitoring ....... 21
2.2. General Concept of the Integrated Methodology (IPAM) ........ 23

2.2.1. Step 1: Collection and Aggregation of Monitoring Data .... 24
2.2.2. Step 2: Predictive Analytics and Anomaly Detection ......... 24
2.2.3. Step 3: Notification and Preliminary Diagnosis ................. 25
2.2.4. Step 4: Response and Remediation (Human- Driven or
          Automated) ........................................................................... 26
2.2.5. Step 5: Incident- Based Learning (Feedback Loop) ............ 27

2.3. System Architecture and IPAM Components ........................... 28
2.4. Formalization of the Predictive- Analytics Process 
(Mathematical Foundations) ............................................................ 31
2.5. Example of IPAM in Practice: Failure Scenario and Alert ...... 38

CHAPTER 3. PRACTICAL IMPLEMENTATION OF THE 
PREDICTIVE-ANALYTICS MODULE ...........................................41

3.1. Selection of Tools and Technical Solutions ............................... 41



4

The Definitive Guide to International Business Expansion

3.2. Implementation of Predictive Metrics Analysis 
       (Example Code) .......................................................................... 44
3.3. Log- Anomaly Detection (Implementation Example) ................ 46
3.4. Integration of Results and Alert Generation ............................ 48
3.5. Validation of Functionality on Test Data .................................. 49
3.6. Demonstration of the Predictive Module in Action 
       (Graphical Example) .................................................................. 50
3.7. Support and Updating of the Module........................................ 51

CHAPTER 4: DISCUSSION AND COMPARATIVE  
ANALYSIS ............................................................................................54

4.1. Analysis of the Advantages of the Integrated IPAM 
       Methodology ............................................................................... 54
4.2. Limitations and Challenges in Implementing IPAM ............... 57
4.3. Comparison with Alternative Approaches ................................ 59

Conclusion ...........................................................................................63
References ...........................................................................................66



5

PREFACE

The monograph introduces and substantiates an Integrated 
Predictive Analytics Methodology (IPAM) designed to enhance the 
efficiency of web-application monitoring by anticipating failures, 
reducing error rates, and accelerating diagnostic processes. The 
study’s relevance stems from the increasing complexity of modern 
web systems and the heightened demands for their reliability 
and continuous availability. It examines prevailing monitoring 
practices and reveals their main constraints — chiefly the reactive 
character of observability tools and the data overload produced 
by excessive signal noise. IPAM marries the collection of hetero-
geneous telemetry (log files, metrics, and traces) with machine- 
learning algorithms for prognostic anomaly detection, focusing on 
proactive problem identification and automated diagnostics that 
are expected to cut downtime and boost DevOps productivity. The 
monograph follows a scholarly style, providing a current literature 
review, a detailed description of IPAM, an account of the predictive 
module’s implementation, and a comparative analysis against ex-
isting solutions. The results are theoretical and methodological: 
they emphasize the conceptual novelty of the approach, while con-
clusions rest on an analytical synthesis of the literature. Overall, 
the work contributes to web-application performance management 
by offering a proactive monitoring strategy that strengthens reli-
ability and shortens incident- response times.



6

ABOUT THE AUTHOR

Anastasiia Perih is a Full Stack Software Engineer at 
Northspyre in Jersey City, NJ, USA.

She specializes in Web Engineering and brings over four 
years of experience in the full lifecycle of web application devel-
opment — from crafting responsive front-end interfaces (React, 
Next.js) to building scalable back-end services (Node.js, Express) 
and deploying them in AWS cloud environments. Anastasiia began 
her career as a QA Engineer, which instilled in her a rigorous 
approach to software quality and reliability. She holds both the 
AWS Certified Cloud Practitioner and AWS Certified Developer 
credentials (2025).

Anastasiia is the author of Architectural Solutions for Imple-
menting Real- Time Applications in the Digital Environment and 
Integrating Machine Learning Technologies to Enhance Web De-
velopment Efficiency, where she explores scalable system architec-
tures and the application of predictive analytics in web workflows. 
She is an active member of the Hackathon Raptors association.

Email: anastasiia.perih@gmail.com



7

INTRODUCTION

Modern web applications serve as critical business com-
ponents, subject to stringent requirements for availability and 
service quality. Even brief outages or performance degradations 
can incur substantial financial losses and undermine user trust. 
Analysts at Gartner estimate that the average cost of unplanned 
downtime reaches $5,600 per minute (over $300,000 per hour) 
(Figure 1) [1]. Industry reports confirm this pattern: 94% of large 
enterprises experience IT-system failures annually, and 51% of 
IT executives note an increase in downtime frequency in recent 
years [2].

The challenge is compounded by the growing complexity of 
web environments. The transition from monolithic architectures 
to microservices, widespread adoption of cloud platforms and 
containerization, and the rapid cadence of continuous integration 
and continuous delivery (CI/CD) have led modern web systems to 
generate enormous volumes of monitoring data and logs. A typical 
distributed application may produce thousands of events and log 
entries per second, exceeding human capacity to interpret such 
streams in real time [3]. As a result, conventional monitoring 
solutions — relying on fixed thresholds and manual response — 
no longer suffice for timely detection and prevention of issues [4].

The problem addressed in this work is enhancing the effec-
tiveness of web-application monitoring amid escalating complex-
ity and data volumes. Here, monitoring effectiveness denotes an 
observability system’s ability to detect application anomalies ac-
curately and promptly and to support rapid root-cause analysis, 
thereby minimizing mean time to recovery (MTTR).

Traditional approaches often operate in a reactive mode: 
alarms trigger only after a failure has occurred or metrics have 
noticeably degraded, and responsibility for diagnosing the root 
cause falls on on-call engineers who must piece together disparate 
logs and metrics under severe time pressure. This model fails to 



8

The Definitive Guide to International Business Expansion

satisfy contemporary requirements for two reasons. First, any 
delay in detecting faults directly increases downtime. Second, the 
fragmentation of data — performance metrics, application logs, 
network events, and so on — and the absence of a unified view 
prolong the time needed to identify root causes [4]. The situation is 
aggravated by “alert fatigue”, whereby staff become overwhelmed 
by a high volume of notifications, making it difficult to discern 
truly critical alerts [6]. As the number of monitoring tools grows 
(infrastructure, application, user-experience, etc.), organizations 
encounter increasing fragmentation: the lack of a “single pane of 
glass” for system- health analysis slows response times and ham-
pers cross-team collaboration [4].

One key direction in the evolution of operations technolo-
gy is the integration of artificial intelligence and advanced an-
alytics into operational workflows, a trend encapsulated by the 
term AIOps. Gartner predicts that “the future of IT operations 

Figure 1. Estimated cost of web-application downtime for enterprises: 
93% of companies assess hourly downtime at over $300,000, nearly 

half at more than $1 million, and 23% at above $5 million.  
The high incident costs underscore the critical importance  

of proactive monitoring [5]



9

Introduction

is unimaginable without AIOps”, given that data volumes and 
change velocity now exceed human capacity for processing [3]. 
AIOps platforms harness big data and machine- learning algo-
rithms to automatically detect meaningful patterns in telemetry 
(logs, metrics, traces) and respond proactively [3]. This shift en-
ables an organization to move from post factum reaction toward 
predicting and preventing incidents before they impact end users 
or the business. In this context, predictive analytics refers to the 
application of statistical and intelligent techniques to historical 
monitoring data in order to forecast future events or anomalies 
[7]. For example, trend analysis of resource utilization can pre-
dict a server overload, while detecting subtle shifts in log-mes-
sage sequences can signal an impending component failure [16]. 
A significant benefit of this approach is the reduction of errors 
and outages through preventive measures and the acceleration 
of diagnostics: by indicating in advance which metrics and com-
ponents warrant scrutiny, the system narrows the search space 
for root-cause analysis.

The objective of this monograph is to develop and substan-
tiate an integrated methodology for enhancing the effectiveness 
of web-application monitoring based on predictive analytics. To 
achieve this objective, the following research tasks have been 
addressed:

(1) an analysis of the current state of web-application moni-
toring and existing solutions for failure detection and diagnosis;

(2) identification of the principal issues (limitations of the 
reactive approach, informational “silos”, diagnostic delays) and 
formulation of requirements for a new methodology;

(3) development of the Integrated Predictive Analytics Meth-
odology (IPAM) concept, including its architecture and a step-by-
step blueprint for embedding predictive analytics into the moni-
toring process;

(4) proposal of practical approaches to implementing the pre-
dictive module using machine- learning algorithms, together with 
an exploration of integration options with existing monitoring 
systems;



10

The Definitive Guide to International Business Expansion

(5) a comparative discussion of the proposed methodology 
versus traditional approaches, evaluation of its advantages and po-
tential challenges, and delineation of avenues for future research.

The monograph is structured as follows. In the Introduc-
tion, the study’s relevance is justified and its objective and tasks 
are defined. Chapter 1 presents a literature review and analysis 
of current solutions: it traces the evolution of monitoring tools 
from traditional APM to the observability paradigm, outlines 
the capabilities and shortcomings of modern instruments, and 
examines recent scholarly work on applying machine learning 
to log and metric analysis. Chapter 2 is devoted to formulating 
the proposed IPAM methodology: it describes its guiding princi-
ples, component structure, and the core models and hypotheses 
underpinning predictive monitoring. Chapter 3 details the prac-
tical implementation of the methodology’s key component — the 
predictive analytics module — including architectural decisions, 
data-processing algorithms, code excerpts, and model results from 
a test scenario. In Chapter 4, the outcomes are discussed: IPAM 
is compared with alternative approaches (classic monitoring and 
partially integrated solutions), its strengths and weaknesses are 
analyzed, and considerations of scalability and maintainability are 
addressed. The Conclusion synthesizes the findings and outlines 
concrete steps for the practical deployment of the proposed ideas.

Thus, this research combines theoretical justification with 
applied aspects, offering a proactive approach to web-application 
monitoring that is highly pertinent to the software- industry land-
scape. Below, the results of the tasks outlined above are presented 
in sequence.



11

CHAPTER 1.  
ANALYSIS OF CURRENT SOLUTIONS

1.1. Evolution of Web- Application Monitoring:  
From Reactive to Observability

Web-application monitoring has historically progressed from 
basic availability checks to sophisticated, multilayered systems 
that observe every aspect of an application’s operation. Tradition-
al Application Performance Monitoring (APM) concentrates on 
collecting key performance metrics — response time, throughput, 
error rates, resource utilization, and so forth — and comparing 
them against predefined thresholds. Early APM tools (for example, 
IBM Tivoli and HP OpenView), and more recent solutions such as 
New Relic, AppDynamics, and Dynatrace, provided a basic visi-
bility into application health and generated alerts when metrics 
crossed acceptable limits. While effective in relatively static archi-
tectures, this threshold- based approach began to reveal limitations 
as systems grew more complex. First, the number of monitored 
parameters increased dramatically, resulting in an avalanche 
of monitoring data. Second, rigid thresholds and alerting rules 
proved insufficiently adaptable — either too sensitive (leading to 
noise and false positives) or too coarse (failing to detect atypical 
degradation patterns).

The concept of observability emerged as an extension of mon-
itoring, intended to offer deeper insight into a system’s internal 
state by examining its external outputs. Originally a term from 
control theory — denoting the ability to infer the internal condition 
of a system from its outputs — it has been adopted in software 
contexts to describe a system’s capacity to expose enough infor-
mation (metrics, logs, traces, etc.) to answer arbitrary questions 
about its behavior [8, 9]. Put simply, monitoring tells whether 
“the system is healthy right now”, whereas observability enables 



12

The Definitive Guide to International Business Expansion

one to ask “why is the system behaving this way?” To achieve 
high observability, practitioners instrument applications with 
extensive telemetry: detailed event logs, distributed request traces 
(for example, via OpenTracing or OpenTelemetry), business- level 
metrics, user-experience indicators (such as client-side page-load 
times), and more. Integrated data-collection platforms — so-called 
“observability stacks”—have arisen to consolidate these inputs, 
combining log storage (the ELK stack: Elasticsearch, Logstash, 
Kibana), metrics systems (Prometheus, Graphite), and tracing 
backends (Jaeger, Zipkin) into unified pipelines [10].

Table 1 underscores that moving from classical APM to ob-
servability entails not only an expansion of collected data but also 
a qualitative shift in alerting flexibility and diagnostic depth.

Despite the evolution from monitoring to observability, many 
organizations find that an abundance of data does not automat-
ically yield meaningful insights. Research indicates that only 
around 26% of companies are fully satisfied with their systems’ 
current level of observability, while the remainder report gaps — 
particularly in correlating information from disparate sources. 
In other words, possessing metrics, logs, and traces alone does 

Table 1 
Comparison of Classical APM and  

Observability Characteristics
Parameter Classical APM Observability

Data Volume Core metrics (CPU, 
memory, response time)

Metrics + logs + traces + 
business data

Alerting Ap-
proach Static thresholds Dynamic, trend- based 

analytics
Diagnostic 

Depth
Metric > threshold → 

alert
Event correlation and 

root-cause analysis

Adaptivity Manual threshold tun-
ing

Automatic model and 
pattern updates

Tooling Stack New Relic, AppDynam-
ics, Dynatrace

ELK stack, Prometheus, 
Jaeger, OpenTelemetry



13

Chapter 1. Analysis of Current Solutions

not guarantee rapid problem comprehension: engineers frequent-
ly still must manually piece together scattered data fragments. 
Consequently, in recent years both industry and academic efforts 
have focused on intelligent telemetry- analysis tools capable of 
automating anomaly detection and identifying likely root causes 
amid a multitude of signals [10].

1.2. Modern Monitoring and Observability Tools  
and Their Limitations

Analysis of the monitoring and observability market reveals 
a multitude of disparate solutions, each addressing its own “layer” 
or aspect. According to McKinsey reports, all monitoring tools can 
be grouped into four primary categories, as shown in Table 2 [4].

Despite the breadth of data collected, many organizations com-
bine tools — for example, using Zabbix or Nagios for infrastructure, 
AppDynamics for applications, and custom scripts for business 
metrics — resulting in a fragmented monitoring ecosystem. Each 
system emits alerts in its own format and stores data separately, 
so when an incident occurs, teams work with different datasets 
and lack a unified view of events, causing response delays [4].

Moreover, traditional systems are primarily configured for 
reactive alerting. Alerts are often tied to static thresholds (e. g., 
CPU > 90% or a 500 error in logs), which poorly adapt to context: 
high load may be benign, while a single error might not be critical. 
Conversely, the onset of anomalous behavior may not immediately 
breach a threshold, so no alert fires. Palo Alto Networks specialists 
note that one of the main challenges of classic monitoring is the 
explosion of alerts as systems become more complex — engineers 
process hundreds of signals per day, only a small fraction of which 
indicate genuine issues [6]. False positives overwhelm teams and 
dull vigilance, increasing the risk of missing a real failure among 
the noise. False negatives — failing to alert when a genuine prob-
lem develops outside predefined patterns — compound the risk.



14

The Definitive Guide to International Business Expansion

Incident diagnosis poses a separate challenge. Reducing 
mean time to recovery (MTTR) requires rapid root-cause identi-
fication, which is non-trivial in distributed systems. A failure in 
one microservice may cascade through dependent services, each 
generating its own logs; reconstructing the chain of events often 
depends on correlating timestamps and trace identifiers. Existing 
APM platforms offer visualization tools — such as service-map 
diagrams that highlight problem nodes — but automated root-
cause determination remains largely unsolved. In 2022, Datadog 
introduced its Watchdog RCA feature in an attempt to automate 
culprit- identification via metric and log correlation, but such ca-
pabilities are still in their infancy [11]. Academic studies likewise 
emphasize that manual log analysis does not scale and call for 

Table 2 
Categories of monitoring tools: examples, data types, 

capabilities, and limitations

Category Example 
Tools

Data 
Collected

Main 
Capabilities Limitations

Infrastruc-
ture Moni-

toring

Zabbix, Nag-
ios, Datadog 

Infra

CPU, memory, 
disk and net-

work statistics

High-frequen-
cy sampling; 
node health 

checks

No application 
context; reac-
tive alerting

Classic 
APM

New Relic, 
AppDynam-
ics, Dyna-

trace

Response time, 
HTTP errors, 

connection-pool 
stats

Granular ap-
plication met-
rics; request 

tracing

Static thresh-
olds; noise 

from false pos-
itives and false 

negatives
Digital 

Experience 
Monitoring 

(DEM)

Google 
Analytics, 
Pingdom

RUM metrics, 
Web Vitals, 

CSAT

End-user 
experience 

analysis

Doesn't reveal 
internal fail-

ures until user 
experience is 

affected
Business- 
Process 

Monitoring

Splunk, ELK 
with custom 

scripts

Transaction 
logs; business- 
operation KPIs

Business- 
metric evalu-
ation; end-to-
end analytics

Requires 
deep domain 
knowledge; 

data remains 
fragmented



15

Chapter 1. Analysis of Current Solutions

algorithmic methods capable of detecting anomalous patterns and 
interpreting their significance [12].

A recent survey by Dobrowolski et al. [12] reports a steady 
rise in research on automated failure-log analysis, with dozens of 
new methods proposed annually. Yet in practice, engineers seldom 
adopt these solutions directly, owing to a gap between academic 
techniques and industry needs: many methods are complex to 
implement, demand high computational resources, or require 
fine-tuning, making deployment costs outweigh potential benefits. 
Common shortcomings of current approaches include sensitivity 
to concept drift (changes in data characteristics over time), lack of 
standardized benchmarks and reproducibility, and limited model 
interpretability [12]. Consequently, many promising advances 
remain confined to academic settings, while operations teams con-
tinue to rely on tried-and-tested — but inherently limited — tools.

In summary, modern monitoring and observability solutions 
deliver vast streams of data but fall short of fully integrating and 
proactively leveraging that data. Systems generate more alerts 
than humans can process in real time. When downtime costs are 
extreme, a new class of methods is needed — ones that integrate 
heterogeneous data to eliminate siloing and apply intelligent anal-
ysis to surface meaningful signals, forecast trends, and guide 
diagnostics. This imperative underlies the growth of the AIOps 
paradigm, and the following sections review scholarly work pro-
posing proactive monitoring techniques.

1.3. Predictive Analytics and Machine Learning  
in Monitoring: State of Research

Predictive Analytics is a discipline focused on forecasting 
future system states by leveraging accumulated historical data 
and identified patterns. In the context of web-application moni-
toring, predictive analytics takes two principal forms: firstly, the 
forecasting of metrics over time (for example, predicting server 



16

The Definitive Guide to International Business Expansion

load or user-traffic levels for the next hours or days to enable 
proactive scaling), and secondly, the detection of anomalies and 
failure prediction by recognizing complex patterns in telemetry 
data (logs, event sequences, metric combinations). Both aspects 
have attracted significant research interest in recent years.

In the domain of metric forecasting, time-series analysis 
techniques are widely employed — ARIMA models, exponential 
smoothing methods — as well as more contemporary approaches 
using recurrent neural networks (LSTM) and gradient- boosting 
algorithms. Commercial cloud platforms have begun to embed 
such capabilities: for instance, Amazon AWS offers “Predictive 
Scaling” for EC2 auto-scaling based on machine- learning models 
that predict future load [13]. The literature describes successful 
proactive- scaling use cases: Guo Y. et al. [14] developed the Pre-
dictive Auto- Scaling System (PASS) for large- scale web applica-
tions, which uses gradient boosting to forecast request volumes 
and dynamically allocate resources, thereby reducing overload 
incidents. Their results indicate that these methods can decrease 
resource- shortage failures and optimize user-response latency by 
approximately 15–20 percent compared to reactive scaling [14]. 
Although predictive scaling primarily addresses infrastructure 
management rather than pure monitoring, it demonstrates the 
value of forecasting in preventing performance degradations.

Even more actively explored is the application of machine 
learning to automate the detection of anomalies in logs and met-
rics and to predict failures. Logs are a rich source of information 
about an application’s internal events. Each log entry typically 
contains a textual message — often annotated with a severity 
level (INFO, ERROR, etc.) and other attributes. Manual analysis 
of massive log files is infeasible, prompting the development of 
various algorithms for automated processing. One such approach 
is template- based log parsing: raw text is mined for recurring 
message templates (e. g., using the Drain or Spell algorithms), 
after which logs are represented as sequences of these templates. 
These sequences can then be examined for deviations from normal 
behavior. For example, sequence- mining techniques can reveal 



17

Chapter 1. Analysis of Current Solutions

that a particular combination of templates frequently precedes 
a failure, despite its rarity under normal conditions. Hadadi F. et 
al. [15] presented a method combining frequent- pattern mining 
and machine learning to predict system failures from log data 
several minutes before they occur, achieving approximately 90 
percent accuracy in their tests.

Contemporary studies increasingly leverage deep learning 
for log analysis. Hadadi et al. [15] conducted a systematic evalua-
tion of various neural- network architectures for failure prediction 
from log records and demonstrated that, across multiple datasets, 
the best performance is achieved by combining a convolutional 

Figure 2. Modular architecture for predictive log-failure analysis 
[15]: log entries are converted into sequences of templates, which 

are then embedded into numeric vectors (for example, via a BERT-
based model). A neural classifier (CNN or RNN) processes the vector 

sequence and produces a failure- likelihood forecast



18

The Definitive Guide to International Business Expansion

neural network (CNN) for feature extraction with the Logkey2Vec 
method for template embedding. In their experiments, the model 
was able to predict failures from logs with an F1 score of up to 
0.96, provided that the dataset included more than 350 unique 
templates and that failures accounted for over 7.5% of log entries 
[15]. Although this work is exploratory in nature, it establishes 
the feasibility of applying deep learning to textual event logs 
for failure forecasting. Moreover, the authors propose a modular 
architecture — shown in Figure 2 — that separates the template- 
vectorization stage (e. g., using embeddings derived from models 
such as BERT) from the sequence- classification stage (e. g., a CNN 
or RNN that outputs a “will fail / will not fail” prediction). Such 
a design permits flexible combination of different log-processing 
techniques and model types.

Beyond logs, distributed traces — records of a request’s jour-
ney through a system — provide valuable insights. A trace consists 
of a tree of spans representing interservice calls. By analyzing 
deviations in timing or call order, one can detect performance 
issues in interservice interactions. Kohyarnejadfard et al. [16] 
introduced an approach that applies natural- language-processing 
techniques to trace data to uncover performance anomalies and 
regressions following releases in microservice environments. Their 
system operates without labeled “failure/normal” data, detecting 
anomalies by comparing behavior before and after changes. They 
achieved high accuracy (F-score ≈ 0.976), and a key finding is 
that the approach accelerates root-cause analysis by visually high-
lighting anomalous spans [16]. This demonstrates that machine 
learning applied to tracing data can not only signal the presence 
of a problem but also pinpoint the specific service or step in the 
call chain where the deviation occurred, which is invaluable for 
rapid failure localization.



19

Chapter 1. Analysis of Current Solutions

1.4. AI-Driven Signal Correlation  
and Root- Cause Analysis

Finally, it is worth highlighting the application of AI to cor-
relate alerts and localize problems (Root Cause Analysis, RCA). 
Beyond detecting isolated anomalies, researchers aim to automate 
the linking of multiple symptoms to a single root cause. One such 
approach employs graph- based dependency analysis (Figure 3): 
a directed graph of services or components is constructed and 
weighted by anomaly scores, after which nodes are identified whose 
propagated anomaly can explain observed deviations in others.

The diagram illustrates a simplified service graph with direct-
ed edges (Frontend → Auth → Database and Frontend → Payments 

Figure 3. Graph-based RCA: Propagated Anomaly Scores



20

The Definitive Guide to International Business Expansion

→ Database). The initial base_scores denote anomalies detected 
in each service (for example, via metrics or logs). A basic propa-
gation model boosts the score of nodes indirectly affected. Node 
size reflects the propagated score: the “Database” node exhibits 
the highest value, indicating it as the most likely root cause of the 
observed failures.

propagated[node] = base[node] + α · ∑ parent base[parent]

Zhang et al. [17], in their LogRobust study, employed a micro-
service call graph that jointly analyzes logs and metrics, demon-
strating the automatic identification of the faulty service in ap-
proximately 85% of complex failure scenarios. Another promising 
direction is causal machine learning (Causal ML), which seeks to 
infer not merely correlations but true cause-and-effect relation-
ships between events. Yoshimatsu [19] observes that causal models 
can filter out “satellite” effects — symptoms that are consequences 
rather than causes — and focus analysis on the genuine root cause. 
However, these methods currently demand deep domain expertise 
and lack general applicability.

The literature review confirms that a solid foundation ex-
ists: algorithms and prototype systems validate the efficacy of 
predictive analytics in monitoring. Machine- learning techniques 
uncover latent failure patterns in logs, metrics, and traces, while 
analysis of extensive historical data enables forecasting of future 
anomalies. Consequently, a shift from reactive alarm handling 
to proactive reliability management is technically feasible. Yet, 
most studies address only isolated elements — either a single data 
modality (e. g., logs alone) or a specific algorithm. The challenge of 
integrating all components into a cohesive methodology remains 
unresolved. This gap motivates the present research: to develop 
a unified, integrated monitoring methodology that consolidates 
heterogeneous data streams and contemporary analytical methods 
into a practical, industry- ready system.



21

CHAPTER 2.  
FORMULATION OF THE INTEGRATED 

METHODOLOGY (IPAM)

2.1. Requirements for Proactive  
Web- Application Monitoring

On the basis of the analysis conducted in Chapter 1, the fol-
lowing requirements for a new monitoring methodology — capable 
of overcoming the identified shortcomings of existing approa ches — 
can be formulated:

1. Forecasting and Preventive Action. The system must not 
only detect current anomalies but also predict potential failures 
before they occur. This entails employing predictive- analytics 
models that, based on historical data, recognize early warning 
signs of impending problems (for example, metric degradations 
that precede a component failure). As Gartner notes, the value of 
AIOps lies in its ability to anticipate future issues and address 
them before they adversely affect users [6]. Hence, the methodol-
ogy must ensure a proactive monitoring stance.

2. Integration of Heterogeneous Data. It is essential to unify 
various telemetry types — metrics, logs, traces, events, etc. — with-
in a single analytical framework. Such integration is a cornerstone 
of enhanced observability: only by correlating disparate data can 
a complete picture emerge. The methodology must define processes 
for data collection, storage, and preprocessing across formats, as 
well as mechanisms for correlation (for instance, linking logs to 
specific requests via trace- ID). Establishing a “single source of 
truth” for observability will eliminate tool fragmentation [4].

 • 3. Noise Reduction and Intelligent Alerting. The system 
should filter and aggregate alerts so that operators receive 
only the minimally necessary and sufficiently informative 
notifications. Ideally, rather than issuing numerous low-level 



22

The Definitive Guide to International Business Expansion

alarms (CPU, memory, errors, etc.) during a complex outage, 
the platform would generate a single incident report indi-
cating which indicators have deviated and suggesting the 
most likely affected component. Employing machine- learning 
algorithms for event correlation and signal prioritization 
is mandatory to combat alert fatigue [6]. Proactive alerts 
might take the form: “predicted: high probability of failure 
in service X within the next hour”.

4. Accelerated Diagnostics (RCA). Any warning of a potential 
issue must be accompanied by information that simplifies root-
cause identification. The system must automatically perform basic 
root-cause analysis: for example, upon detecting an anomaly in 
a group of metrics, it should highlight which other metrics are 
abnormal during the same period and which component or node 
is the most likely culprit. According to McKinsey, AIOps adoption 
should shift the burden of collecting and analyzing vast observabil-
ity data onto machines, delivering operators ready-made root-cause 
insights [4]. The methodology must include steps for dependency 
analysis and key-indicator evaluation to pinpoint the failure source.

5. Adaptivity and Learning from Experience. Web applica-
tions evolve, and system behavior changes (load grows, releases 
introduce new log patterns). Therefore, the monitoring method-
ology must accommodate data drift. Predictive models require 
periodic retraining on new data — via online learning or sched-
uled updates — to remain effective over time and guard against 
concept drift [12].

6. Ease of Integration and Operation. Given that implemen-
tation complexity is a major barrier to adopting new methods, 
the proposed methodology should leverage existing infrastructure 
(metric- collection agents, log formats, etc.) and augment it with 
an intelligent layer without requiring wholesale reengineering 
[12]. Compatibility with standard protocols (such as OpenTele-
metry) and portability of machine- learning components are highly 
desirable. Moreover, system outputs (predictions and detected 
anomalies) must be interpretable by engineers to foster trust and 
enable verification.



23

Chapter 2. Formulation of the Integrated Methodology (IPAM)

On the basis of these requirements, the Integrated Predictive 
Analytics Methodology (IPAM) has been developed — a holistic ap-
proach that meets all of the above criteria. A detailed description 
of IPAM’s structure and constituent components follows.

2.2. General Concept of the Integrated  
Methodology (IPAM)

The Integrated Predictive Analytics Methodology (IPAM) is 
a multi- stage process for structuring monitoring, encompassing 
both technical and organizational measures that enable a shift to-
ward proactive management of web-application health. Conceptu-
ally, IPAM can be viewed as an overlay on traditional monitoring, 
introducing two key layers:

1. Data- Integration Layer, which ensures the collection and 
aggregation of all relevant information about system operation.

2. Intelligent- Analysis Layer, which performs prediction 
and anomaly detection and generates actionable recommendations.

Figure 4 illustrates a simplified IPAM methodology diagram, 
outlining the main stages.

Figure 4. Simplified diagram of the IPAM methodology

24 | Page 

On the basis of these requirements, the Integrated Predictive Analytics 

Methodology (IPAM) has been developed—a holistic approach that meets all of the 

above criteria. A detailed description of IPAM’s structure and constituent 

components follows. 

2.2.	General	Concept	of	the	Integrated	Methodology (IPAM)	

The Integrated Predictive Analytics Methodology (IPAM) is a multi-stage 

process for structuring monitoring, encompassing both technical and organizational 

measures that enable a shift toward proactive management of web-application 

health. Conceptually, IPAM can be viewed as an overlay on traditional monitoring, 

introducing two key layers: 

1. Data-Integration Layer, which ensures the collection and 

aggregation of all relevant information about system operation. 

2. Intelligent-Analysis Layer, which performs prediction and anomaly 

detection and generates actionable recommendations. 

Figure 4 illustrates a simplified IPAM methodology diagram, outlining the 

main stages. 

Figure 4. Simplified diagram of the IPAM methodology 

Data Integration 
(Step 1: Collect & 

Aggregate 
Telemetry) 

Analytical Core 
(Step 2: Forecast 

& Anomaly 
Detection) 

Alerting & 
Diagnostic Layer 

(Steps 3–5: Notify, 
React, Feedback) 



24

The Definitive Guide to International Business Expansion

2.2.1. Step 1: Collection and Aggregation  
of Monitoring Data

At the first stage, heterogeneous data from every component 
of the system is collected centrally. The web application and its 
supporting infrastructure must be equipped with:

 • Metric- collection agents (resource utilization, performance 
indicators);

 • Logging agents emitting structured logs in a unified format 
with request- correlation identifiers;

 • Distributed- tracing instrumentation to capture end-to-end 
call flows;

 • Real User Monitoring (RUM) agents and business- level data 
collectors (for example, transaction metrics) where required.

All telemetry is funneled into a single observability data re-
pository or bus. This may be implemented using existing solu-
tions — for instance, an “observability pipeline” based on the Open-
Telemetry Collector, which ingests telemetry from diverse sources 
and forwards it to a centralized store. At this step, it is crucial 
to normalize and enrich the data — adding timestamps, request 
IDs, service names, and other metadata — to enable correlation 
of events across different streams (metrics, logs, traces, etc.).

Outcome of Step 1: A consolidated data lake containing all ap-
plication and infrastructure telemetry, fully prepared for analysis.

2.2.2. Step 2: Predictive Analytics  
and Anomaly Detection

In the second stage, the aggregated data undergoes contin-
uous analysis using machine- learning algorithms and statistical 
methods. This layer forms the analytical core of IPAM and com-
prises three modules:

(a) Metrics- Forecasting Module. Performs short-term forecast-
ing of key metrics (load, response time, memory usage, etc.) and 
flags instances where the forecast indicates significant degrada-
tion. Such cases are treated as probable future issues (for example, 
a projected response-time error exceeding SLA within 30 minutes).



25

Chapter 2. Formulation of the Integrated Methodology (IPAM)

(b) Logs- and Traces- Anomaly- Detection Module. Analyzes log 
streams and distributed traces for deviations from normal behav-
ior. It applies the methods described in Chapter 1: clustering and 
tracking of log-message templates, identification of anomalous se-
quences, and comparison of trace- based statistics against historical 
baselines to detect performance degradation or novel error patterns.

(c) Signal- Correlation and Incident- Formation Module. Acts 
as a “gateway”, ingesting outputs from modules (a) and (b) as well 
as any incoming alerts from traditional monitoring tools. It then 
decides how to form composite incidents by:

 • Consolidating multiple signals into coherent incident reports;
 • Filtering false positives via ML (for instance, suppressing a 
metric anomaly if it is not corroborated by logs or user-im-
pact data);

 • Merging distinct symptom streams when they point to the 
same underlying issue.

The purpose of this module is to reduce noise intelligently 
and package actionable information for operators.

Outcome of Step 2: A set of predictive alerts and incidents, 
each containing a forecast (what might occur or which anomaly 
was detected) along with the contextual data required for rapid 
diagnosis.

2.2.3. Step 3: Notification and  
Preliminary Diagnosis

In the third stage, incidents identified in Step 2 are deliv-
ered to the operations teams (SRE/DevOps) via an alerting sys-
tem — whether a commercial incident- management platform (e. g., 
PagerDuty, Opsgenie) or an internal dashboard. Crucially, the 
notification format must go beyond a simple “X is out of bounds”. 
Each alert should include:

 • Description of the potential problem, for example: “Over the 
past ten minutes, Service A has experienced an anomalous 
surge in HTTP 5xx errors, which may indicate a failure in 
Component B”.



26

The Definitive Guide to International Business Expansion

 • Confidence or severity level, elevated when multiple inde-
pendent signals corroborate the issue.

 • Forecast of expected evolution, such as: “If this trend contin-
ues, the service will become unavailable within five minutes”.

 • Preliminary root-cause insights, generated automatically — 
for instance, noting that immediately before the error spike, 
logs from Service A recorded a new exception Y, while its 
downstream Service B exhibited a concurrent load increase.

By transforming alerts into concise, AI-curated problem re-
ports, IPAM greatly accelerates operator understanding and reduc-
es triage time. As Deloitte analysts observe, embedding analytics 
and automation into operations improves decision quality and 
lowers costs by eliminating manual data gathering and stream-
lining workflows [20].

2.2.4. Step 4: Response and Remediation  
(Human- Driven or Automated)

Upon receipt of a proactive warning, the operations team ini-
tiates the appropriate response: either triggering an automated 
remediation playbook — such as restarting the affected service, 
rolling back to a prior release, or activating standby capacity — 
or performing a deeper manual diagnosis guided by the supplied 
context, then applying the necessary fix. IPAM integrates seam-
lessly into the standard Incident Response lifecycle without pre-
scribing specific remediation tactics, leaving the choice of manual 
versus automated actions to the organization. What matters is 
that earlier detection and richer diagnostic information dramat-
ically shorten the time to remediation. In the ideal scenario, 
the incident is averted altogether — for example, by detecting 
a memory-leak pattern overnight and rebooting the service before 
morning load peaks.



27

Chapter 2. Formulation of the Integrated Methodology (IPAM)

2.2.5. Step 5: Incident- Based Learning  
(Feedback Loop)

The concluding element of the methodology is a feedback 
mechanism whereby, after each incident, the analytical models 
are retrained using the newly captured data. All information about 
the incident — symptoms, root cause, and resolution — is recorded 
and can be fed back into the analytical core. For example, if the 
system issued a low-confidence warning that nonetheless preced-
ed a serious outage, model parameters can be adjusted so that 
future occurrences of the same pattern yield higher confidence. 
Conversely, if a false alarm occurred, filters can be refined to sup-
press similar spurious signals.

In this way, IPAM supports iterative improvement: over time, 
the accuracy of its forecasts and the relevance of its alerts should 
increase as more incident experience accumulates. This stage also 
encompasses machine- learning model maintenance — regular re-
training on an expanding dataset ensures that new usage patterns 
and emerging error types introduced by application updates are 
properly handled.

The IPAM process thus delivers continuous, proactive mon-
itoring. It is important to emphasize that IPAM is not merely 
a technology stack but a repeatable methodology that can be em-
bedded in a DevOps or SRE practice. Organizational adjustments 
may be required — for instance, instituting formal incident- review 
sessions to update the system (Step 5), or creating a monitoring/
ML engineer role responsible for model upkeep. Yet the antici-
pated benefits are substantial: reduced mean time to recovery, 
lower operator burden during incident analysis, and more stable 
service operation.

In the following chapter, we present a detailed technical 
implementation of IPAM’s key components — most notably the 
predictive- analytics module — and discuss how IPAM can inte-
grate with existing operational processes.



28

The Definitive Guide to International Business Expansion

2.3. System Architecture and IPAM Components

To implement the IPAM methodology, a monitoring- system 
architecture must be designed that incorporates new components. 
There are several possible architectural variants, but conceptu-
ally they share common elements. Figure 5 depicts a generalized 
architecture for an IPAM-based solution.

Let’s look at each element in more detail below:
1. Data-collection agents — located on every application node 

or service, these agents gather metrics (CPU, memory, network 
statistics), logs, and traces. Off-the-shelf agents may be employed 
(for example, Telegraf for metrics, Filebeat for logs, or the Open-
Telemetry SDK within application code for distributed tracing).

2. Centralized telemetry store — responsible for ingesting and 
persisting incoming data. In a real-world deployment this may 
consist of multiple systems: a time-series database (Prometheus, 
InfluxDB) for metrics, Elasticsearch for logs, and a dedicated trace 
store. Crucially, the store must allow fast access to recent data (for 
example, the last one to two hours) to support real-time analysis.

3. Predictive- analytics module — the core of the system, which 
is composed of several sub-modules:

 – Metrics- forecasting service is a lightweight application 
that periodically retrieves the latest metrics from storage, 
applies a forecasting model (such as LSTM or Prophet), and 
compares the forecast to actual values. When the deviation 
exceeds a predefined threshold (for instance, predicted 
latency exceeds the SLA in ten minutes), it emits a “pre-
dictive alert”.

 – Log-analysis service processes the live log stream, building 
statistics on new messages, detecting spikes in errors, and 
running a trained model (for example, a CNN or transform-
er) to label log-sequence segments as normal or anoma-
lous. Upon recognition of an abnormal pattern, it generates 
a “log-anomaly” event.

 – Trace-analysis service evaluates incoming distributed trac-
es by measuring span durations, comparing them against 



29

Chapter 2. Formulation of the Integrated Methodology (IPAM)

30 | Page 

Figure 5. Solution architecture 

Let's look at each element in more detail below: 

Data Collection Agents 
(metrics, logs, traces, RUM) 

Centralized Telemetry Store 
(Prometheus, Elasticsearch, 

Tracing DB, Data Lake)

Incident Orchestrator 
(aggregate events, prioritize) 

Alerts & Visualization Layer 
(PagerDuty/Slack, 

Dashboards) 

Model & Training Data Store 
(offline retraining, version 

control of ML models) 

Predictive Analytics Module 

1. Metrics Forecasting

2. Log Anomaly Detection

3. Trace Anomaly

4. Correlation & KB

Figure 5. Solution architecture



30

The Definitive Guide to International Business Expansion

historical distributions to flag unusually long or atypical 
call sequences, and tracking per-service error rates. Its 
output consists of “trace/service anomaly” events.

 – Knowledge base and correlation engine — this sub-module 
stores the rules and models used for signal correlation. It 
captures relationships between events (for example, if an 
anomaly in Service A coincides with an error spike in Ser-
vice B, group them into a single incident) and maintains 
a system- topology graph of microservice dependencies, 
which aids in assessing impact propagation.

4. Incident orchestrator — aggregates events from the 
predictive- analytics module and determines how to form alerts. 
It groups related events (by time window or by affected service), 
assigns severity levels, and creates composite incidents. For ex-
ample, if a CPU-forecast alert and a log anomaly arrive simulta-
neously for the same service, it will generate a single incident: 
“Potential overload of Service X (elevated CPU and error spikes)”. 
The orchestrator then dispatches these incidents to external no-
tification systems.

5. Notification and visualization interface — the primary 
touchpoint for operations engineers, encompassing integrations 
with alert channels (email, SMS, chat platforms, or dedicated 
apps) and a real-time dashboard. The dashboard displays system 
health, predictive indicators, and active incidents, and adds IP-
AM-specific widgets — such as “Predicted Load” or “Log Anomalies 
(Last Hour)”—alongside traditional charts, enabling operators to 
view both current and forecasted states and to drill down into logs, 
metrics, and traces around detected anomalies.

6. Training-data and model repository — a standalone com-
ponent (or logical partition of existing infrastructure) where data 
for offline model training and versioned model artifacts are stored. 
For example, nightly ingestion captures all labeled anomalies 
and incident outcomes (“failure occurred/ did not occur”), and da-
ta-science teams use this repository to retrain models and refine 
correlation rules. Current ML-model weights are also maintained 
here, ready for deployment.



31

Chapter 2. Formulation of the Integrated Methodology (IPAM)

From a technical standpoint, IPAM can be deployed as a dis-
tributed, microservice- based system in which each module operates 
as an independent service and communicates via a message queue 
or data bus. This design delivers scalability — log and metric anal-
ysis components can be scaled out horizontally — and for latency- 
sensitive tasks (such as real-time forecasting), performance tuning 
is critical, for example by using GPU-accelerated numerical- compute 
libraries (TensorFlow, PyTorch) when data volumes are high.

It is worth noting that several contemporary AIOps platforms 
already embrace similar architectures. For instance, IBM Cloud 
Pak for AIOps features a workflow where data from the Watson 
AIOps Analytics Engine (analogous to our analytics module) feeds 
into its Incident Manager and then into ChatOps for team noti-
fications [21]. Gartner also characterizes an AIOps platform as 
consisting of two core elements — big-data storage and machine- 
learning analytics — integrated tightly with IT-operations work-
flows [22]. The IPAM methodology aligns with this paradigm, 
adapting it to the specific demands of web-application monitoring.

A key facet of IPAM’s architecture is its embedding within ex-
isting DevOps and SRE practices. It is recommended that IPAM’s 
outputs — namely, predictive alerts — be routed directly into the 
organization’s incident- management system. Moreover, during 
application development, observability needs must be baked in: 
developers should emit the necessary events, annotate logs with 
trace- IDs, and expose business- level metrics so that IPAM has 
sufficient data to function effectively. Cultivating a mature culture 
of data-driven operations and automation, as experts emphasize, 
is a critical success factor for AIOps adoption [23].

2.4. Formalization of the Predictive- Analytics 
Process (Mathematical Foundations)

The IPAM methodology rests on several fundamental algo-
rithmic problems, each of which is well studied in data science 



32

The Definitive Guide to International Business Expansion

and machine- learning theory. Below is a concise formalization of 
the primary task.

Time- Series Forecasting. Formally, given a discrete time se-
ries of a metric x(t) (for example, the average service response time 
during minute t), the goal is to predict values x(t + h) at a horizon 
h ahead (see Figure 6). Classical statistical models (ARIMA, SA-
RIMA) assume that x(t) is a stationary, autoregressive process. 
Machine- learning models such as LSTM, by contrast, take a slid-
ing window of the most recent W observations, {x(t  ,  –   ,  W + 
1),…, x(t)}, and learn a mapping to x(t + h).

In IPAM, the primary interest lies not in the exact forecast 
but in whether the predicted value will exceed a given threshold 
T. This converts the problem to a binary classification:

   = + > ( )y I x t h T

where I[·] is the indicator function.
In this example:
 • The grey band marks the sliding window of past observations 
{x(t  ,  –   ,  W + 1)…x(t)} used by the model.

 • The red cross indicates the forecast at time t + h.

Figure 6. Time Series Forecasting and Threshold- based Classification



33

Chapter 2. Formulation of the Integrated Methodology (IPAM)

 • The dashed orange line is the threshold T (for instance, an 
SLO value).

 • The label ŷ = 1 denotes a positive classification (forecast 
exceeds T).

By framing overload prediction as classification (“overload will 
occur / will not occur”), one can set T to a service- level objective 
(e. g. / T = 2 s for response time). Model training on historical data 
then proceeds by minimizing a forecast- error loss (such as mean 
squared error) or by maximizing classification accuracy on the 
threshold- exceedance task.

Anomaly detection in log sequences proceeds as follows. Con-
sider a series of log messages

 =  1 2, ,..., nL l l l  
over a given interval. Each message li belongs to some template 
(message class) ci — for example, li = “ErrorConnectingToDB” maps 
to the template c = DBConnectionError. The entire log can thus 
be represented as a template sequence

 =  1 2, ,..., nC c c c .

The task is to determine whether C is normal or anomalous, 
a classic binary sequence- classification problem. Solutions range 
from frequency- statistical methods (e. g., comparing the distri-
bution of template frequencies against a reference) to recurrent- 
neural-network or transformer models trained to identify “abnor-
mal” sequences.

One effective approach uses a language model plus anomaly 
thresholding: train a model to estimate

( )− −1,...,i i k iP c c c

on normal data, then compute the joint probability P(C) for the 
current sequence. If P(C) falls below a preset threshold, the se-
quence is flagged as anomalous (see Figure 7).

In Figure 7, the following elements are shown:
 • Log Message Position on the X axis — the index of each 
message in the sequence.



34

The Definitive Guide to International Business Expansion

 • P(ci∣history) on the Y axis — the model’s probability of the 
current template given the preceding k elements.

 • Threshold (0.2) — the dashed line indicating the cutoff prob-
ability.

 • Bars below the threshold (highlighted in red) denote mes-
sages whose probability is too low and are thus classified 
as anomalous.

 • Blue bars represent normal messages.
This visualization illustrates the LM-based anomaly- detection 

method: the language model evaluates each template’s likelihood 
in context, and if

( ) < 0.2iP c history

that message is flagged as anomalous. This enables the detection 
of unexpected log patterns without manual text inspection. Hadadi 
et al. [15] applied a similar principle — combining log embeddings 
with a classifier to produce a failure label. Within IPAM, a pre-
trained model (for example, a transformer trained to predict the 
next template from prior ones) can be used to signal whenever 
a message appears “surprising” to the model.

Figure 7. Sequence Log Probabilities and Anomaly Detection



35

Chapter 2. Formulation of the Integrated Methodology (IPAM)

Next, correlation and the causal graph. Let there be a set of 
services

 =  1,..., mS s s .

We construct a directed dependency graph G in which si→sj 
whenever service i invokes service j (for example, Frontend → 
Auth → Database). For each service si at time t, define a problem 
indicator




= 



1,
( ) 2,

0,
i i

if an anomaly or predicted failure
a t was signalled for s in Step

otherwise

The goal is to identify a subset of vertices

⊆R S

as candidates for the root cause explaining the observed anomalies.
In the simplest heuristic, if there is an edge si→sj and both 

ai(t) = 1 and aj(t) = 1, it is more plausible that precipitated the 
problem in sj rather than the reverse — particularly when si itself 
“failed” and all downstream dependents also signal. Extending 
this idea across the graph, one selects those nodes whose indica-
tor is 1 and which either have no incoming edges (origins of the 
graph) or whose predecessors all have a= 0. This rough rule finds 
nodes that are anomalous but not explained by any upstream 
anomaly.

A more sophisticated treatment frames the graph as a Bayesi-
an network or causal model. One may seek to estimate

( is root ( ))iP s a t ,

where a(t) is the vector of all ai(t). By applying message- passing 
algorithms over G, given priors on failure probabilities, one com-
putes posterior probabilities for each node being the true source. 
While this monograph does not delve into the full mathemati-
cal machinery of causality, IPAM assumes the presence of such 
a mechanism. In practice it is described simply as



36

The Definitive Guide to International Business Expansion

Importance(si) = f(ai(t) = 1, aparents of i (t) = 0),
which mirrors the expert rule for finding the root in an error- 
dependency tree.

On this diagram, each node represents a service, with its 
anomaly indicator ai(t) shown in parentheses (1 = anomaly, 0 = 
normal). Arrows denote service calls — for instance, Frontend → 
Auth and Frontend → Payments, with Auth → Database. By the 
heuristic, the root cause is a node flagged anomalous whose par-
ents are either absent or themselves normal. In this example, only 
Frontend (a = 1) meets those conditions and is thus identified as 
the most likely source of the problem.

Finally, risk assessment and incident ranking. When multiple 
predictive events occur simultaneously, it is essential to prioritize 
them. To this end, a criticality score Cr(I) is introduced for each 
incident I. Cr(I) can be defined as a function of:

(a) the projected impact — e. g., if a service outage is forecast, 
how many users will be affected (estimated from current traffic);

(b) the model’s confidence in its prediction;

Figure 8. Causal Dependency Graph with Anomaly Flags



37

Chapter 2. Formulation of the Integrated Methodology (IPAM)

(c) the component’s system- level importance — e. g., a core 
service is inherently more critical.

Formally:
= α ⋅ + β ⋅ + γ ⋅Cr( ) Impact( ) Confidence( ) Priority( )I I I I ,

where α, β, γ are weighting coefficients. Impact is normalized by the 
number of affected users or transactions (for example, high for a fron-
tend or high-traffic service), Confidence is the ML model’s output 
probability (e. g., 0.95 for 95%), and Priority is a static priority level 
assigned to the component (e. g., the payment service is always set to 
high). This formula can be tuned to organizational needs. Its purpose 
is to ensure that, under constrained resources (multiple concurrent 
alerts), the team addresses the highest-risk incidents first.

In Table 3, three example incidents are shown with normal-
ized values for Impact, Confidence, and Priority. The coefficients 
α = 0.5, β = 0.3, and γ = 0.2 yield the weighted contributions in the 
columns “α·Impact”, “β·Confidence”, and “γ·Priority”. The result-
ing Cr score ranks incidents by their risk level; here, “Frontend 
overload” has the highest Cr = 0.885, making it the top priority 
for immediate response.

These fundamental elements underpin the algorithmic design 
of IPAM. Importantly, despite leveraging sophisticated models, the 
methodology remains human- governed: at each stage, parameters, 

Table 3 
Incident Risk Scoring Example

Incident
Im-
pact 
(0–1)

Confi-
dence 
(0–1)

Pri-
ority 
(0–1)

α·Im-
pact

β·Con-
fidence

γ·Pri-
ority Cr

Frontend 
overload

0.80 0.95 1.00 0.40 0.285 0.20 0.885

Auth service 
latency spike

0.60 0.70 0.70 0.30 0.210 0.14 0.650

Database 
connection 
warnings

0.40 0.90 0.40 0.20 0.270 0.08 0.550



38

The Definitive Guide to International Business Expansion

thresholds, and expert judgment (e. g., component criticality) can 
be configured. This transparency is vital for practical adoption — 
a fully opaque, black-box AI issuing unexplained alerts would 
likely face resistance from engineers. IPAM, by contrast, melds 
data-driven intelligence with visibility and control. Chapter 3 
presents concrete algorithmic implementations corresponding to 
these formalizations.

2.5. Example of IPAM in Practice:  
Failure Scenario and Alert

To illustrate, consider a simplified scenario: a web application 
comprises three services — Frontend, Auth (authentication), and 
DB (database). Dependencies follow the chain Frontend → Auth → 
DB (i. e., a user request first hits the front end, which calls Auth to 
verify the user, and Auth in turn queries the database). Suppose 
that an erroneous configuration change is applied to the database, 
which after some time triggers a sharp increase in query latency 
(for example, an index is disabled, causing queries to slow). Let 
us examine how IPAM responds in this case (Figure 9).

1. Normal behavior: requests completed in 50 ms at Auth and 
100 ms at DB. After the index change, DB performance begins to 
degrade: first 150 ms, then 300 ms, while load increases.

2. IPAM Activation:
 • The metrics- forecasting module for DB detects a trend: DB 
response time has been rising steadily over the past five 
minutes. A predictive model (for instance, linear regression) 
forecasts that in ten minutes DB response time will exceed 
one second — surpassing the SLA threshold (e. g., 500 ms). 
An event is generated: “Predicted DB degradation in 10 
minutes” (Confidence 0.9).

 • Meanwhile, the log-analysis module notes an uptick in warn-
ings and errors in the DB logs (e. g., slow-query messages), 
which it records as a log anomaly.



39

Chapter 2. Formulation of the Integrated Methodology (IPAM)

 • After a few minutes, the situation worsens: the Auth service 
also begins experiencing latency, as it waits for the degraded 
DB. The tracing module registers anomalously long spans 
on the Auth → DB path (exceeding the 99th percentile), 
generating an event: “Auth → DB trace anomaly”.

 • Correlation: The incident orchestrator observes that the DB 
and Auth anomalies are linked in the dependency graph. It 
consolidates them into a single incident: “Possible database 
degradation: forecasted response-time increase to 1 s. Abnor-
mal Auth → DB query delays already observed”. Criticality 
is set to high, since the database is a core component.

 • Notification: The incident is sent to the on-call team, in-
cluding the forecasted timing. On the dashboard, the DB 
component is highlighted as “Degrading”.

 • Response: Engineers receive the warning before users ex-
perience significant slowdown. They inspect the database, 
discover the indexing issue, and restore the index. DB re-
turns to normal operation, averting a major outage.

 • Feedback: IPAM logs that the incident was prevented; the 
models can incorporate this case (for example, the DB-la-
tency growth pattern) to improve sensitivity to similar 
future scenarios.

Had IPAM not been in place, a real outage would likely have 
manifested once response times became excessive and users began 
to complain or timeouts occurred. The reaction would have come 
later, and downtime would have been unavoidable. This example 
demonstrates the value of a proactive approach.

The solid blue line represents the actual response time of the 
database (DB) before and after the index was disabled. The blue 
dashed line shows the forecast (for example, a linear extrapolation) 
predicting that the SLA threshold (500 ms) will be exceeded in 
ten minutes. The green line reflects the actual response time of 
the Auth service, which begins to increase once the DB degrades. 
The red dashed line marks the SLA boundary at 500 ms. Vertical 
dashed lines indicate the key IPAM events: Forecast Alarm, Log 
Anomaly, Trace Anomaly, and Incident Correlation.



40

The Definitive Guide to International Business Expansion

Of course, not every failure can be anticipated — an abrupt 
hardware outage, such as a sudden loss of power to a server, of-
fers no advance warning and cannot be forecast. IPAM does not 
eliminate the need to respond to such unpredictable incidents. 
Nevertheless, many problems give early warning signs — memory 
leaks, gradual performance degradation, logic errors after deploy-
ment — and the methodology is built to catch these precursors. 
In practice, up to 40% of software incidents stem from the slow 
accumulation of such issues, which can be detected in advance 
through analytics. IPAM is specifically aimed at these cases.

In summary, this chapter has formulated the Integrated 
Predictive Analytics Methodology (IPAM), which unifies moni-
toring-data collection, predictive analytics, intelligent signal cor-
relation, and notification/diagnostic workflows. IPAM leverages 
contemporary advances in Big Data and machine learning to 
fulfill the demands of proactive monitoring. The next chapter will 
explore the technical implementation of IPAM’s key components — 
most notably the predictive- analytics module — and demonstrate 
how it can be integrated into an existing technology stack.

Figure 9. IPAM Scenario: DB and Auth Latency  
with Forecast and Events



41

CHAPTER 3.  
PRACTICAL IMPLEMENTATION  

OF THE PREDICTIVE-ANALYTICS 
MODULE

3.1. Selection of Tools and Technical Solutions

Before embarking on development of the IPAM predictive 
module, the technologies and tools that align with the method-
ology’s requirements must be identified. Since the objective is 
to leverage existing solutions rather than build everything from 
scratch, the following options are considered.

For metrics, Prometheus is recommended — a widely adopted 
monitoring system offering time-series storage and promQL for 
querying data. It integrates seamlessly with exporters on servers 
and within applications. For logs, an EFK stack (Elasticsearch, 
Fluentd, Kibana) or modern cloud alternatives (Azure Monitor, 
Splunk) is suitable. In a prototyping context, Elasticsearch alone 
may serve for log storage and search. For distributed tracing, 
Jaeger — an open-source tracing system — with a backend such 
as Elasticsearch or a SQL database is appropriate. These compo-
nents can be deployed within the application’s Kubernetes cluster 
or on dedicated servers.

Two approaches to processing telemetry streams are possi-
ble: real-time (stream) or micro- batch with minimal delay (batch) 
(Table 4). A stream- based architecture typically relies on a plat-
form like Apache Kafka paired with Spark Streaming or Flink. 
Batch processing can be implemented via scheduled jobs (cron), 
for example, running analysis on the most recent minute of data 
every minute.

In an initial prototype, it is simpler to start with period-
ic analysis and — should speed requirements grow — migrate 
to streaming. A balanced choice is made: the analytics module 



42

The Definitive Guide to International Business Expansion

will run as a service that retrieves fresh data every minute and 
updates its results, achieving near-real-time responsiveness at 
a one-minute granularity.

Next, the machine- learning models are addressed. The selec-
tion of algorithms is driven by the data characteristics:

 • For metric forecasting: one may choose the Facebook Prophet 
library or GluonTS (MXNet), or employ a classical ARIMA 
model (via Python’s statsmodels). Prophet is advantageous 
because it automatically handles trends and seasonality 
with minimal manual tuning, making it well suited to our 
load-and-metric- forecasting requirements.

 • For log analysis: the data consist of text sequences. A sim-
ple option is frequency- based analysis, or one can apply a 
deep-learning model. Open-source implementations exist — 
autoencoders for logs (e. g., LogDeep) and pre-trained NLP 
models — but initially a lighter- weight approach suffices. 
For example, compute TF-IDF vector representations of 

Table 4 
Batch vs. Stream Processing for IPAM Analytics

Factor Batch Processing Stream Processing
Latency Minutes–hours (e. g., cron 

every minute)
Sub-second-seconds (real 

time)
Implementa-
tion Complex-

ity

Low (simple scheduled 
jobs)

High (Kafka, Spark 
Streaming, Flink setup)

Scalability Moderate (depends on job 
window and hardware)

High (horizontal scaling 
of event streams)

Resource Uti-
lization

Spiky (runs in bursts) Steady (continuous con-
sumption)

Operational 
Cost

Lower (fewer services to 
manage)

Higher (more infrastruc-
ture components)

Typical Use 
Case

Minute- level forecasting; 
periodic retraining

Sub-minute anomaly de-
tection; immediate alerts

Recommend-
ed When…

Data volume is moderate; 
near-real time is sufficient

Ultra-low latency is 
critical



43

Chapter 3. Practical Implementation of the Predictive-analytics Module

log-message templates and cluster them with DBSCAN to 
single out anomalous clusters. However, the best results 
come from a specialized model. We can draw on DeepLog 
[17], which trains an LSTM to predict the next log mes-
sage; any message not anticipated by the model is flagged 
as anomalous. While a full DeepLog implementation is 
complex, for our prototype a primitive log-anomaly detector 
will do — e. g., treating an interval that exhibits a sudden 
spike in ERROR-level messages as anomalous.

 • For correlation and RCA: in the early stages, rules based on 
service dependencies can be used (as discussed previously: if 
a predecessor service is anomalous, it is more likely the root 
cause). More advanced machine- learning techniques (such 
as causal- graph models) can be introduced incrementally.

Next, the development language and environment must 
be defined. Python is the natural choice for machine learning 
and rapid development. Key libraries include scikit- learn, pan-
das, and numpy for data wrangling; TensorFlow or PyTorch for 
neural- network needs; elasticsearch-py for log queries; and pro-
metheus-api-client for metric retrieval. The Python- based ana-
lytics service can expose a REST API or gRPC interface — e. g., 
a Flask or FastAPI “analyzer” that, upon request, returns the 
current set of anomalies and forecasts. The IPAM orchestrator 
invokes this service.

For notification, an e-mail or Slack bot can consume events 
from the analytics module. In the prototype, outputting to a log 
or console is acceptable. Visualization can be handled in Grafana 
by connecting it to the metric and log stores, plus configuring 
a custom panel that fetches analytics alerts via API.

In summary, the predictive- analytics module will be imple-
mented as a Python service integrating with Prometheus and 
Elasticsearch. The module will perform:

 • retrieval of current metrics;
 • computation of forecasts and detection of threshold breaches;
 • retrieval of recent logs and primitive analysis (for example, 
counting ERROR-level entries);



44

The Definitive Guide to International Business Expansion

 • assembly of results into a data structure listing anomalies 
and alerts.

Illustrative code will be shown in Python-style pseudocode. In 
a production deployment, this module is integrated via API calls 
or by emitting messages onto the observability bus.

3.2. Implementation of Predictive  
Metrics Analysis (Example Code)

Let us begin with the metrics- forecasting component. We 
consider a simplified task: forecasting the average CPU load on 
a web server five minutes ahead. We use the fbprophet library 
(or an equivalent such as NeuralProphet).

from prophet import Prophet
import pandas as pd

# Step 1: Retrieve the last hour of CPU data from the Prometheus API
cpu_data = prom.query_range(
    query="avg(instance_cpu_usage_percent)",
    start="-1h",
    step="1m"
)
# Assume prom.query_range returns a list of (timestamp, value) pairs

# Prepare a DataFrame for Prophet
df = pd.DataFrame(cpu_data, columns=["ds", "y"])  # ds: timestamp, 
y: metric value
model = Prophet(interval_width=0.95)
model.fit(df)

# Forecast five minutes ahead (five 1-minute points)
future = model.make_future_dataframe(periods=5, freq='min')



45

Chapter 3. Practical Implementation of the Predictive-analytics Module

In this example, the Prophet model is trained on the most 
recent 60 one-minute samples of average CPU usage and forecasts 
the next five minutes. If the upper bound of the forecast exceeds 
80%, an alert is generated. In a real deployment, multiple service 
metrics would be analyzed similarly, each against its own SLA 
threshold. The output of this block might be a list of potential 
issues, for example:

forecast = model.predict(future)
y_hat = forecast[‘yhat’].values
y_hat_upper = forecast[‘yhat_upper’].values
# Last forecasted value and its upper confidence bound
pred_value = y_hat[-1]
pred_upper = y_hat_upper[-1]

# Define a threshold (e.g., 80% CPU usage is critical)
threshold = 80.0
if pred_upper > threshold:
    alert = (
        f "Predicted high CPU load: expected {pred_value:.1f}% in 5 min"
        f "(threshold {threshold}%)”
    )
    alert_level = "warning" if pred_value < threshold else "critical"

[
  {
    "metric": "CPU_usage",
    "service": "Frontend",
    "pred": "85%",
    "threshold": "80%"
  },
  {…}
]



46

The Definitive Guide to International Business Expansion

3.3. Log- Anomaly Detection  
(Implementation Example)

For log analysis we will use a simple approach: count all 
ERROR- and WARNING-level messages over the last five min-
utes and compare that count to the historical average. This is, 
of course, a simplification — in a production system you would 
analyze message contents — but even a spike in error volume can 
signal a problem.

Assume that our logs are stored in Elasticsearch with fields 
timestamp, level, and service. The following code snippet gathers 
per-service error counts:

from elasticsearch import Elasticsearch
import datetime

es = Elasticsearch("http://localhost:9200")

# Step 1: Define the analysis window (e.g., the last 5 minutes)
end_time = datetime.datetime.utcnow()
start_time = end_time - datetime.timedelta(minutes=5)

# Step 2: Run an aggregation query in Elasticsearch to count ERRORs 
per service
query = {
    "bool": {
        "filter": [
            {"term": {"level": "ERROR"}},
            {"range": {"timestamp": {"gte": start_time, "lt": end_time}}}
        ]
    }
}
aggs = {
    "by_service": {
        "terms": {"field": "service"},



47

Chapter 3. Practical Implementation of the Predictive-analytics Module

        “aggs”: {“count”: {“value_count”: {“field”: “_id”}}}
    }
}
resp = es.search(index=”applogs-*”, query=query, aggs=aggs, size=0)
# resp will contain the error count aggregation for each service

error_counts = {
    bucket[“key”]: bucket[“count”][“value”]
    for bucket in resp[“aggregations”][“by_service”][“buckets”]
}

# Step 3: Compare counts against thresholds or historical baselines
error_thresholds = {“Frontend”: 10, “Auth”: 5, “DB”: 3}  # allowable 
errors per 5 minutes
log_alerts = []
for service, count in error_counts.items():
    if count > error_thresholds.get(service, 5):
        log_alerts.append(
            f”Service {service}: {count} errors in the last 5 minutes (thresh-
old exceeded)”
        )

This code checks whether each service’s error count exceeds its 
configured threshold. In a real system, thresholds could be comput-
ed dynamically — e. g., mean + 3 σ — or you could apply the “three- 
sigma rule”, issuing an alert when error volume triples the norm.

A more advanced algorithm might analyze the error texts 
themselves — for instance, flagging any previously unseen error 
templates (which can be done via message classification). But for 
a prototype, detecting a sudden spike in ERROR messages already 
provides a useful signal.

Suppose that, after running this code, log_alerts contains:

["Service DB: 8 errors (norm <= 3)"]

This would indicate a potential problem in the database service.



48

The Definitive Guide to International Business Expansion

3.4. Integration of Results and  
Alert Generation

Now that predictive-metrics alerts and log-anomaly alerts 
have been produced, they must be merged into coherent incidents. 
Assume two lists exist — metric_alerts and log_alerts (and, if trac-
es are analyzed, trace_alerts).

The orchestrator can simply group alerts by service. For ex-
ample:

alerts_by_service = {}
for alert in metric_alerts + log_alerts:
    # Extract the service name from the alert text
    svc = extract_service_name(alert)
    alerts_by_service.setdefault(svc, []).append(alert)

final_incidents = []
for svc, alerts in alerts_by_service.items():
    if len(alerts) > 1:
         # Combine multiple signals into one incident
         incident = f"[INCIDENT] {svc}: " + "; ".join(alerts)
    else:
         incident = f"[INCIDENT] {alerts[0]}"
    final_incidents.append(incident)

Here, extract_service_name(alert) parses a service identifier — 
for example, it would return “DB” when given an alert like “Service 
DB: …”. Thus, if a DB CPU-overload forecast and a DB-error spike 
occur simultaneously, the resulting incident might read:

[INCIDENT] DB: Predicted high CPU load…; Service DB: 8 errors 
in 5 min…

Finally, these incidents are dispatched. In a prototype, alerts 
can simply be printed or logged:



49

Chapter 3. Practical Implementation of the Predictive-analytics Module

for inc in final_incidents:
    print(f"{datetime.datetime.utcnow()}: {inc}")
    # Alternatively, invoke an external notification API here

In production, this step would call a Slack webhook, send an 
email, or integrate with an incident- management system.

3.5. Validation of Functionality  
on Test Data

To ensure that the module operates correctly, testing can be 
performed on historical data. For example:

 • Take the last month of metric data along with the time-
stamps of known incidents, and verify whether the module 
issued warnings before the incidents occurred (evaluating 
precision and recall).

 • Simulate a scenario by feeding the module an artificial time 
series with a clear upward trend (as in the example at the 
end of Chapter 2) and confirm that a warning is generated 
with the required lead time.

 • Verify that under normal conditions the module does not 
raise continual false alarms (it is advisable to tune sensi-
tivity so it is not overly high — for instance, using inter-
val_width=0.95 in Prophet produces a conservative forecast).

Example of a simple synthetic-data test:
Suppose we have a synthetic error series that is normally 

zero errors and then suddenly jumps to ten errors — an obvious 
anomaly. We can validate the logic as follows:

# Synthetic error- count test data:
synthetic_errors = [0, 0, 1, 0, 2, 0, 0, 10, 12, 0] # 10–12 errors surge
error_threshold = 5
alerts = []
for count in synthetic_errors:



50

The Definitive Guide to International Business Expansion

    if count > error_threshold:
       alerts.append(f"High errors: {count}")
    else:
        alerts.append(None)

print(alerts)
# Expect alerts[7] and alerts[8] to be not None

In this way, each subsystem’s logic can be debugged individu-
ally. After validation, the module is integrated into the production 
environment and hooked up to the live data stream.

3.6. Demonstration of the Predictive Module  
in Action (Graphical Example)

To illustrate, consider a chart showing the behavior of a real 
metric alongside its forecast and the moment of alerting. In Fig-
ure 10, the error rate (errors per minute) climbs from 2 to 10 
over a given period. At the moment marked by the green verti-
cal dashed line, the IPAM module issues a warning, forecasting 
the upcoming spike (the red dashed curve denotes the forecast). 
A second red vertical dashed line indicates when, without IPAM, 
the metric would have actually crossed the critical threshold and 
triggered a late alert. In this scenario, IPAM’s warning arrives 
ten time units earlier.

This graphical example underscores the central principle: 
by recognizing the upward trend in error rate, the system reacts 
before the metric breaches the critical threshold. That lead time is 
the very benefit that predictive monitoring is designed to deliver.



51

Chapter 3. Practical Implementation of the Predictive-analytics Module

Figure 10. Actual error count (orange line) and model forecast (red 
dashed line). The green dashed line marks the point at which IPAM 

issued a predicted- anomaly warning, whereas classic monitoring 
would only have alerted later when the actual anomaly began (red 

dashed line). This advance notice enables the team to start diagnosis 
and remediation sooner

3.7. Support and Updating of the Module

After deployment of the predictive module, it is essential to 
establish its ongoing maintenance process. Initially, this con-
cerns the regular retraining of models: predictive algorithms 
must be periodically refit on new data. For instance, once a week 
a procedure can be executed to refit the forecasting model — 
adding the latest metrics in Prophet — so that emerging trends 
are captured. Log-analysis models likewise require updates: 
when new functionality introduces unfamiliar log types, the 



52

The Definitive Guide to International Business Expansion

model must learn that these entries are normal rather than 
anomalous.

Equally important is the fine-tuning of thresholds and sensi-
tivity. Based on accumulated experience — how many alerts proved 
useful versus false — the parameters should be adjusted. If too 
many false alarms occur, thresholds can be raised, the forecasting 
horizon shortened, or model sensitivity reduced (for example, re-
quiring the forecast to exceed a threshold by 15% instead of 5%).

Next, the module itself must be monitored. Paradoxically, 
the monitoring system requires its own observability: one must 
track that the analytics service runs without errors, processes 
data without falling behind, and shows no memory leaks. This is 
addressed through standard measures — recording processing- 
latency metrics, resource- usage statistics for the module, and 
logging any exceptions.

Finally, integrate feedback. As specified in the methodology, 
after each incident operators should record whether IPAM predicted 
it and whether the alert was true or false. These annotations — 
captured, for example, in the incident ticket as “warning issued N 
minutes prior; helped/did not help”—can be stored and used to com-
pute IPAM KPIs: average lead time, prevented- incident rate, alert 
precision and recall (Table 5). Such KPIs justify the methodology’s 
effectiveness to management and highlight areas for improvement.

Table 5 illustrates the key metrics for evaluating IPAM’s per-
formance. Sample values based on one month of historical data 
show an average lead time of 12 minutes, a prevented- incident 
rate of 72%, and an alert precision of 85%. These KPIs enable 
leadership to see concrete benefits and to target optimizations — 
such as raising recall above 75%.

Taken together, the implementation described in this chapter 
constitutes an MVP (minimum viable product) of an integrated 
proactive- monitoring system. It can be deployed and tested on 
a limited set of services before being rolled out across the entire 
environment. The next chapter discusses the results of applying 
IPAM, compares it with alternative approaches, and examines 
potential challenges and mitigation strategies.



53

Chapter 3. Practical Implementation of the Predictive-analytics Module

Table 5 
Example IPAM KPI Metrics

KPI Formula Description Sample 
Value

Average 
Lead Time −∑ incidented, alert,

1 ( )i ii
t t

N

Mean time between 
alert issuance and 
potential incident

12 min

Prevented 
Incident 

Rate
prevented

predicted

N
N

Proportion of pre-
dicted incidents 

averted by proactive 
action

0.72 
(72%)

Alert Pre-
cision true positives

alerts

N
N

Share of real in-
cidents among all 

alerts

0.85 
(85%)

Alert Re-
call true positives

actual incidents

N
N

Share of actual 
incidents that were 

predicted

0.68 
(68%)

False Posi-
tive Rate false positives

alerts

N
N

Proportion of alerts 
that proved false

0.15 
(15%)



54

CHAPTER 4.  
DISCUSSION AND COMPARATIVE 

ANALYSIS

4.1. Analysis of the Advantages of  
the Integrated IPAM Methodology

The proposed IPAM methodology is designed to address 
a range of issues inherent in traditional monitoring, and the out-
comes of our conceptual implementation confirm its potential 
effectiveness. Let us examine the realized benefits.

The primary advantage of IPAM is its ability to deliver early 
warnings, thereby reducing the time to detect problems. In the 
classic approach, an alarm is raised only after a metric crosses 
a threshold or a component has already failed. A system equipped 
with predictive analytics, however, often “sees” the problem at its 
inception. This drives MTTD (Mean Time to Detect) down toward 
zero for predictable incidents — the system can detect issues min-
utes or even hours before they fully manifest. Consequently, MTTR 
(Mean Time to Recovery) is also reduced, since remediation can 
begin earlier. In the ideal scenario, some incidents are avoided 
altogether (for example, proactive scaling or service restart occurs, 
and the user remains unaware of any disruption). According to 
Gartner estimates, AIOps adoption can reduce average downtime 
by up to 30% through faster detection and automated diagnosis 
[4]. Our analysis supports these figures: IPAM can issue advance 
alerts, potentially saving tens of minutes on each incident.

By integrating diverse telemetry and presenting preprocessed 
intelligence, IPAM also minimizes the manual effort required for 
data correlation. Previously, an engineer investigating a failure 
would have to open multiple consoles — metric dashboards, log 
viewers, infrastructure monitors — and manually piece together 
the causal chain. Now, the system itself proposes a hypothesis 



55

Chapter 4. Discussion and Comparative Analysis

(“Service A is likely the root cause, since its metrics and logs are 
both anomalous”). This improves the efficiency of on-call engineers, 
who can devote their time to remediation rather than root-cause 
hunting. A report by Palo Alto Networks highlights that one of the 
chief benefits of AIOps is consolidating functionality from multiple 
tools into a single pane of glass, eliminating the need to “search 
for a needle in a haystack” across five to ten consoles [6]. Our 
methodology delivers exactly that unified “glass screen” filled with 
actionable insight. It also mitigates alert fatigue: operators receive 
fewer notifications, but those they do receive are more meaningful.

An indirect effect of IPAM deployment is the improvement 
of key reliability metrics — availability (uptime) and recovery 
time. When failures are prevented or resolved more quickly, total 
downtime is reduced and availability correspondingly increases. 
Moreover, even if an outage does occur but is localized faster, 
data loss, user dissatisfaction, and other negative impacts are 
mitigated. This directly affects the SLA/SLO targets set for the 
web application. For example, if average downtime per incident 
drops from 30 minutes without proactive monitoring to 20 minutes 
with IPAM, annual cumulative downtime could shrink by hours. 
In environments where one hour of downtime costs hundreds of 
thousands of dollars (see Introduction, Figure 1), even modest 
gains are significant. IPAM also fosters performance stability: by 
forecasting impending overloads, resources can be provisioned in 
advance, preventing response-time degradation. End users thus 
enjoy a more consistent service and encounter issues far less often.

Unlike point solutions (for example, applying an algorithm 
only to logs or implementing autoscaling in isolation), IPAM de-
scribes a holistic process spanning all levels of monitoring. This 
methodology aligns with modern Site Reliability Engineering 
(SRE) practices, whose goal is to automate incident response. In 
effect, IPAM implements several SRE principles: golden- signal 
monitoring, alerting automation, and rapid diagnosis. Further-
more, IPAM incorporates human roles into a clear pipeline — data 
→ model → alert → action → feedback — creating an end-to-end 
workflow with well-defined responsibilities (data engineers handle 



56

The Definitive Guide to International Business Expansion

ingestion, ML engineers maintain models, SRE teams drive re-
mediation). Literature notes that an interdisciplinary approach 
(Dev + Ops + Data Science) is the cornerstone of successful digital- 
transformation in monitoring [23]. IPAM embodies this approach, 
uniting domain experts’ knowledge (for example, selecting critical 
metrics and thresholds) with the power of machine learning.

Finally, thanks to its feedback loop, IPAM continually im-
proves over time. Each new incident teaches the models. Unlike 
static rules that require manual revision, IPAM is a “living” pro-
cess. When a new application version introduces previously un-
seen patterns, the system may initially over-alert; but through 
feedback — models are retrained, engineers flag false positives — it 
adapts to the new normal. This ensures IPAM remains effective in 
the long term rather than quickly becoming obsolete. The concept 
of Data- Driven Operations calls for continuously feeding fresh data 
into models to enhance decision making [20], and that principle 
is at the heart of our methodology.

In sum, these advantages suggest that integrating IPAM can 
deliver significant value to any organization operating a complex 
web application. However, it is also crucial to critically assess the 
limitations, potential challenges, and risks associated with deploy-
ing such a system — which we will examine in the next section.

Figure 11. Potential Metrics After IPAM Deployment



57

Chapter 4. Discussion and Comparative Analysis

4.2. Limitations and Challenges  
in Implementing IPAM

Despite its promised benefits, IPAM must contend with sev-
eral potential issues.

First, not all failure modes are predictable, and not every fore-
cast will materialize. False positives — warnings issued without 
any critical event — carry the risk of eroding operator trust if they 
occur too often. Engineers may begin to ignore alerts, negating 
the value of the system. Mitigating false positives requires careful 
threshold tuning and continual model improvement. In some do-
mains (cybersecurity or healthcare), erring on the side of caution 
is acceptable, but in IT monitoring a balance must be struck, or 
teams will revert to manual analysis. Our methodology mandates 
ongoing quality monitoring (precision and recall of predictive 
alerts) and adjustment of rules. In the early rollout phase, teams 
should tolerate a certain level of false alarms, with the goal of 
gradually driving that rate down.

Second, IPAM may fail to catch truly unexpected events. Sud-
den hardware failures without warning or logic errors that man-
ifest abruptly may produce no precursors for predictive models to 
detect. Relying solely on IPAM and relaxing traditional monitoring 
would risk missing these “black-swan” incidents. It is therefore 
essential to maintain reactive, fact-based alerts alongside pre-
dictive ones. IPAM represents an additional layer of defense, not 
a complete replacement. As Gartner cautions, organizations must 
combine automation with human expertise rather than fully re-
linquish control to AIOps [23].

Third, machine- learning models are “data-hungry”. Reliable 
forecasting requires ample historical data. A young project with-
out months of telemetry will see limited benefit from predictive 
analysis simply because there is insufficient material for training. 
Moreover, some computations (such as neural- network training 
on logs) demand significant CPU/GPU resources, increasing in-
frastructure costs. One must ensure that the savings from pre-
vented downtime exceed the expense of supporting the analytics 



58

The Definitive Guide to International Business Expansion

platform. Fortunately, most mature web applications already 
generate years’ worth of logs, and compute resources continue to 
become more affordable. Additionally, IPAM can be deployed in 
stages — starting with the most critical, data-rich services while 
leaving lower- priority components on standard monitoring until 
sufficient statistics accumulate.

Most organizations already maintain some monitoring stack. 
IPAM cannot be deployed in a vacuum — it must integrate with 
existing tools. This raises questions of data-format compatibility, 
feature overlap, and workflow redesign. For example, if a team 
is accustomed to Splunk for log management, introducing Elas-
ticsearch plus ML may feel redundant. IPAM must therefore be 
grafted on carefully, leveraging existing collection mechanisms 
(the OpenTelemetry standard, compatible APIs) wherever possi-
ble. Ideally, IPAM acts as an “overlay” on top of the current stack, 
making its adoption seamless. On the organizational side, you 
must win over the operations team to the new system. This is ulti-
mately a cultural challenge: some engineers will view a machine- 
learning “black box” with skepticism. Transparency — explaining 
why each alert was issued — and a gradual trust- building process 
are critical.

Over time, application behavior evolves (new features, shift-
ing user bases, seasonality), and predictive models age. You must 
establish a routine for retraining: perhaps weekly refits of the 
forecasting model and periodic re-labeling of log-analysis models 
to absorb new patterns. This incurs operational costs — either 
hiring a dedicated data scientist or investing in MLOps automa-
tion, which itself demands effort. Without ongoing support, model 
accuracy will degrade. Moreover, major changes — say, a complete 
architectural overhaul — can render previous models worthless, 
forcing you to rebuild from scratch. As Dobrowolski et al. note, 
truly universal solutions remain elusive, and methods often do 
not transfer directly [12]. Thus, IPAM is not a “set-and-forget” 
appliance but a continuous improvement process. Leadership 
must recognize it as an investment in organizational capability, 
not merely the purchase of another tool.



59

Chapter 4. Discussion and Comparative Analysis

Adding a substantial new component (the analytics platform) 
also enlarges your system’s failure surface. What if the monitoring 
system itself fails? In the worst case, it might issue bad recommen-
dations (for example, triggering an unnecessary service restart) 
or, if tied into auto-remediation, could even provoke a cascading 
failure. Especially in the early stages, it’s wiser to keep humans 
in the decision loop — critical actions should remain engineer- 
driven. IPAM should be isolated: its failures must not impact 
production services (i. e., it should operate asynchronously and 
independently). Finally, consolidating all logs and metrics into 
a single repository presents an attractive target for attackers. You 
must secure the telemetry store and restrict access to ML models 
so that no one can misuse them (for example, to predict your sys-
tem’s weakest points). Although these security considerations lie 
beyond the scope of this work, they warrant careful attention in 
any production deployment.

4.3. Comparison with Alternative  
Approaches

To assess IPAM’s uniqueness and effectiveness, the meth-
odology is compared to several other monitoring- enhancement 
strategies.

First, consider traditional monitoring combined with man-
ual analysis. This baseline approach relies entirely on human 
expertise and reaction speed. Its chief advantage is simplicity and 
transparency — there are no complex models and “no surprises”. 
However, it is slow and scales poorly: as the system grows, more 
engineers are required. IPAM outperforms manual methods in 
reaction time and breadth of data coverage, though it sacrific-
es some simplicity. Essentially, IPAM automates the tasks that 
humans perform in the classic workflow, doing so more rapidly 
and at a larger scale. As systems increase in complexity, manu-
al approaches become unsustainable — McKinsey reports that 



60

The Definitive Guide to International Business Expansion

IT-operations data volumes are growing exponentially and human 
methods can no longer keep up [17]. Thus, the “leave things as 
they are” alternative is not viable over the long term.

Second, many teams implement rule-based proactive monitoring 
by writing custom thresholds and scripts — for example, “if a metric 
increases by more than X % over ten minutes, fire an alert”. While 
this is better than no automation, it is limited: rules must be con-
stantly updated (especially when the environment changes), and they 
fail to capture complex correlations. Compared to ML-based methods, 
rule sets are either too simplistic or devolve into an unwieldy mass 
of special cases. IPAM, in effect, automates the generation of such 
rules from data, with models deriving patterns autonomously. IBM’s 
research notes that hard-coded responses are inadequate in today’s 
dynamic environments and that event- driven learning is required 
[22]. The one advantage of manual scripts is their determinism and 
clarity — one pragmatic approach might be to cover the most criti-
cal, obvious cases with simple scripts (e. g., auto-restart on explicit 
failure) while entrusting more subtle anomaly detection to IPAM.

Finally, many commercial APM and AIOps platforms now 
embed AI modules. Leading vendors such as Dynatrace (Davis 
AI), New Relic (Proactive Detection), and Datadog (Watchdog) 
offer out-of-the-box anomaly detection and problem correlation. 
These turnkey solutions benefit from extensive vendor investment 
and broad customer feedback. However, they are often opaque 
and less adaptable: default settings assume “average” use cases 
and may not account for your application’s unique characteristics, 
necessitating considerable customization. Moreover, commercial 
AIOps licenses can be expensive — priced by node or data volume. 
By contrast, IPAM is tool-agnostic and can be implemented with 
open-source components tailored to an organization’s needs. Even 
if a company already uses a commercial AIOps product, it is wise 
to compare capabilities — perhaps New Relic’s Proactive Detec-
tion covers some IPAM functions — but in practice no single tool 
fully integrates logs, metrics, tracing, and custom analytics into 
a cohesive system. IPAM’s distinctiveness lies in its end-to-end 
integration and configurability.



61

Chapter 4. Discussion and Comparative Analysis

An alternative way to reduce failures is to harden the system 
itself: write comprehensive tests, practice chaos engineering, and 
build in redundancy. These measures are undoubtedly import-
ant — catching defects during development spares the need to 
detect them later. SRE practices (for example, enforcing feature 
releases via an error budget) lower the likelihood of incidents. Yet 
no design can eliminate unknown risks entirely. IPAM steps in 
to catch what prevention misses. It complements robust system 
architecture but does not replace it. In an ideal world, you balance 
investments: build resilient systems and layer on intelligent mon-
itoring so that, if failures do occur, IPAM reacts swiftly.

Another common approach is reactive autoscaling or self-heal-
ing without forecasting: e. g., “if CPU > 90%, spin up a new server; 
if the service is unresponsive, restart it”. While effective in simple 
scenarios, such rules often kick in too late — users already feel 
the strain. IPAM, by contrast, can predict overloads before CPU 
reaches 90%. The concept of “adaptive autoscaling” powered by ML 
has emerged as more efficient than fixed thresholds [14]. IPAM 
provides the input signals for self-healing mechanisms, enabling 
proactive scaling rather than purely reactive actions.

This comparison shows that IPAM aligns with the AIOps 
trend, effectively tailoring those principles to web applications. 
Direct competitors are few: either basic traditional methods (which 
fall short on quality) or commercial platforms (to which IPAM 
offers greater flexibility and control).

Table 6 consolidates key parameters across approaches — 
from traditional monitoring through chaos engineering to reactive 
autoscaling — showing that IPAM uniquely combines high pro-
activeness and diagnostic depth with the flexibility and DevOps/
SRE integration required for modern web-application operations.



62

The Definitive Guide to International Business Expansion

Ta
bl

e 
6 

C
om

pa
ri

so
n 

of
 M

on
it

or
in

g 
an

d 
R

es
po

ns
e 

A
pp

ro
ac

he
s

C
ri

te
ri

on
T

ra
di

ti
on

al
 M

on
-

it
or

in
g 

+ 
M

an
ua

l 
A

na
ly

si
s

R
ul

e-
 B

as
ed

 
P

ro
ac

ti
ve

C
om

m
er

ci
al

 
A

P
M

/A
I

C
ha

os
 E

n-
gi

ne
er

in
g 

&
 

SR
E

R
ea

ct
iv

e 
A

ut
os

ca
lin

g
IP

A
M

 (P
ro

-
po

se
d 

M
et

h-
od

ol
og

y)
Pr

oa
ct

iv
e-

ne
ss

Lo
w

M
ed

iu
m

 
(h

ar
d-

co
de

d 
ru

le
s)

M
ed

iu
m

 
(b

ui
lt

-in
 A

I)
H

ig
h 

(t
es

t-
st

ag
e)

Lo
w

 
(p

os
t-

th
re

sh
-

ol
d)

H
ig

h 
(p

re
di

c-
tiv

e 
an

al
yt

ic
s)

Fl
ex

ib
ili

ty
Lo

w
Lo

w
–M

ed
i-

um
M

ed
iu

m
 

(c
lo

se
d 

co
nfi

g-
ur

at
io

n)

M
ed

iu
m

 
(s

ce
na

ri
o-

 
dr

iv
en

)

Lo
w

H
ig

h 
(o

pe
n-

so
ur

ce
, c

on
fig

u-
ra

bl
e)

Sc
al

ab
ili

ty
Po

or
 (m

an
ua

l 
eff

or
t)

M
ed

iu
m

H
ig

h
H

ig
h

H
ig

h
H

ig
h 

(m
ic

ro
se

rv
ic

e-
 

ba
se

d)
Im

pl
em

en
-

ta
tio

n 
C

os
t

M
in

im
al

Lo
w

H
ig

h 
(li

ce
ns

es
, 

in
te

gr
at

io
n)

M
ed

iu
m

 (t
es

tin
g 

in
fr

as
tr

uc
tu

re
)

Lo
w

M
ed

iu
m

 (i
n-

ho
us

e 
M

L 
se

rv
ic

es
)

M
ai

n-
te

na
nc

e 
C

om
pl

ex
ity

Lo
w

M
ed

iu
m

 
(r

ul
e 

up
ke

ep
)

Lo
w

–M
ed

iu
m

 
(v

en
do

r 
su

p-
po

rt
)

M
ed

iu
m

 (s
ce

-
na

ri
o 

de
ve

lo
p-

m
en

t)

Lo
w

M
ed

iu
m

 (p
er

i-
od

ic
 r

et
ra

in
in

g)

D
ia

gn
os

tic
 

D
ep

th
Su

pe
rfi

ci
al

Su
pe

rfi
ci

al
M

ed
iu

m
 (p

ar
-

tia
lly

 a
ut

o-
m

at
ed

)

Lo
w

Lo
w

D
ee

p 
(m

et
ri

cs
, 

lo
gs

, t
ra

ce
s 

co
rr

el
at

io
n)

D
ev

O
ps

/
SR

E
 In

te
-

gr
at

io
n

Po
or

M
ed

iu
m

M
ed

iu
m

H
ig

h
M

ed
iu

m
H

ig
h 

(e
nd

-t
o-

en
d 

pi
pe

lin
e,

 
fe

ed
ba

ck
 lo

op
)



63

CONCLUSION

The research presented here was dedicated to developing an 
integrated methodology for enhancing the effectiveness of web-ap-
plication monitoring through the adoption of predictive analytics. 
The study began by analyzing the current state and limitations of 
traditional monitoring approaches — reactive operation, data frag-
mentation, and alert overload — which underscored the pressing 
need to transition toward proactive, intelligent observability for 
complex web systems. Building on a synthesis of modern AIOps 
practices and observability concepts, the Integrated Predictive 
Analytics Methodology (IPAM) was proposed. IPAM defines a con-
tinuous cycle: the collection and integration of metrics, logs, and 
traces; the application of machine- learning models to forecast 
failures and detect anomalies; the intelligent correlation of signals 
and the generation of alerts that include probable root causes; 
proactive response measures; and finally, system learning from 
each incident through feedback loops.

IPAM was described and formalized in detail. A reference 
implementation architecture was outlined, comprising data-col-
lection modules, telemetry storage, an analytical core, an incident 
orchestrator, and notification interfaces. Chapter 3 introduced 
a prototype predictive- analytics module built with existing tools 
(Prometheus, Elasticsearch, Prophet, Python). Code examples il-
lustrated the principles of metric forecasting (e. g., CPU load) and 
log-anomaly detection (error- spike analysis), as well as the unifi-
cation of these signals into cohesive, proactive alerts. A graphical 
demonstration showed how anomaly forecasts can precede actual 
failures, delivering critical lead time.

Chapter 4 provided a critical evaluation of the methodology. 
IPAM’s key advantages include accelerated detection and diagnosis 
of issues, reduced downtime, diminished operational team burden, 
and overall increased service reliability through proactivity. The 
methodology delivers a higher level of operational automation, 



64

The Definitive Guide to International Business Expansion

aligning with current digital- transformation trends in IT opera-
tions. At the same time, potential challenges were acknowledged: 
ensuring model accuracy and minimizing false alerts, integrating 
IPAM into existing workflows, and bearing the costs of data and 
ML-infrastructure maintenance. It was emphasized that IPAM 
does not replace human expertise but augments it — elevating the 
team’s role to higher- level decision- making. Finally, a comparison 
with alternative approaches (classic monitoring, static scripts, 
commercial AIOps platforms, and development- stage reliability 
methods) demonstrated that IPAM offers the most comprehen-
sive and flexible solution by combining the strengths of multiple 
paradigms.

Thus, the study’s objective has been achieved: a novel moni-
toring methodology has been developed and substantiated, lever-
aging predictive analytics to markedly improve the management 
of web-application health. The scientific contribution lies in the 
integration of heterogeneous data sources and machine- learning 
algorithms into a single IPAM process, tailored for practical adop-
tion within a DevOps/SRE culture. The methodology is recom-
mended for phased rollout in organizations operating large- scale 
web systems, where traditional monitoring tools cannot cope with 
the volume and velocity of events.

It should be noted that this work did not include a full-scale, 
production- level deployment of IPAM — such an experiment falls 
outside its scope. Nevertheless, based on the reviewed literature 
and prototyping results, it is reasonable to expect that a properly 
configured IPAM implementation will yield significant reliability 
improvements. For future research, a pilot project implementing 
IPAM under real-world conditions — with subsequent quantita-
tive evaluation of incident reduction, response-time savings, and 
financial benefit from averted downtime — would be highly infor-
mative. Other promising directions include refining predictive- 
analytics models (for example, applying deep neural networks to 
multivariate time series and log data), exploring AI explainability 
techniques in the monitoring context to foster operator trust, 
and extending the methodology to additional domains (such as 



65

Chapter 4. Discussion and Comparative Analysis

cybersecurity monitoring, where proactive analysis is also in high 
demand).

In summary, the proposed integrated methodology shows 
the potential to transform web-application monitoring practice. 
It embodies the industry’s shift toward intelligent, self-managing 
operational systems. While IPAM’s implementation demands in-
vestment in data infrastructure and process evolution, the antic-
ipated return — increased online- service resilience and reduced 
operational risk — is substantial. Continued work in this area will 
help realize truly predictive, policy- driven information systems 
capable of meeting stringent business requirements for service 
continuity and quality.



66

REFERENCES

1. StatusCake. The most expensive website downtime periods in 
history [Electronic resource]. — Access mode: https://www.statuscake.
com/blog/the-most-expensive- website-downtime- periods-in-history/

2. Queue-it. Cost of downtime: How to calculate it & prevent it [Elec-
tronic resource]. — Access mode: https://queue-it.com/blog/cost-of-downtime/

3. Meserve J. Key Insights and Takeaways from the 2022 Gartner 
Market Guide for AIOps Platforms [Electronic resource]. — Access mode: 
https://www.bmc.com/blogs/gartner- aiops-market- guide/

4. Aggarwal S., Gu H., Gundurao A., Machado J. Boosting IT re-
silience efforts through application performance monitoring [Electronic 
resource]. — 2021. — Access mode: https://www.mckinsey.com/capabil-
ities/mckinsey- digital/our-insights/tech-forward/boosting-it-resilience- 
efforts-through- application-performance- monitoring

5. ITIC. 2023 Global Server Hardware, Server OS Reliability Report 
[Electronic resource]. — 2023. — Access mode: https://astecno.com.br/
wp-content/uploads/2023/09/ITIC-2023-Global- Server- Hardware- Server- 
OS-Reliability- Report.pdf

6. Palo Alto Networks. What is AIOps? [Electronic resource]. — Ac-
cess mode: https://www.paloaltonetworks.com/cyberpedia/what-is-aiops/

7. Quora. What is predictive analytics and how does it differ from 
traditional analytics [Electronic resource]. — Access mode: https://www.
quora.com/unanswered/What-is-predictive- analytics-and-how-does-it-
differ-from-traditional- analytics

8. Netreo. Observability vs. monitoring: What’s the difference? [Elec-
tronic resource]. — 2021. — Access mode: https://www.netreo.com/blog/
observability-vs-monitoring/

9. Livens J. Observability vs. monitoring: What’s the difference? 
[Electronic resource]. — 2025. — Access mode: https://www.dynatrace.
com/news/blog/observability-vs-monitoring/

10. Kosińska J. et al. Toward the observability of cloud- native ap-
plications: The overview of the state-of-the-art //IEEE Access. — 2023. — 
Vol. 11. — P. 73036–73052.



67

References

11. Chen B., Abou- Amal O. Automated root cause analysis with 
Datadog Watchdog [Electronic resource]. — 2021. — Access mode: 
https://www.datadoghq.com/blog/datadog- watchdog-automated-root-
cause- analysis/

12. Dobrowolski W., Nikodem M., Unold O. Software Failure Log Anal-
ysis for Engineers //Electronics. — 2023. — Vol. 12. — No. 10. — P. 2260.

13. Barr J. New-predictive scaling for EC2, powered by machine 
learning //AWS news blog. — 2018.

14. Guo Y. et al. Pass: Predictive auto-scaling system for large- scale 
enterprise web applications //Proceedings of the ACM Web Conference 
2024. — 2024. — pp. 2747–2758.

15. Hadadi F. et al. Systematic evaluation of deep learning models 
for log-based failure prediction //Empirical Software Engineering. — 
2024. — T. 29. — No. 5. — P. 105.

16. Kohyarnejadfard I. et al. Anomaly detection in microservice 
environments using distributed tracing data analysis and NLP //Journal 
of Cloud Computing. — 2022. — T. 11. — No. 1. — P. 25.

17. Zhang X. et al. Robust log-based anomaly detection on unstable 
log data //Proceedings of the 2019 27th ACM joint meeting on European 
software engineering conference and symposium on the foundations of 
software engineering. — 2019. — pp. 807–817.

18. Zhang, J., Li, Z., & Le, T. (2021). NeuralLog: An Effective Log- 
Based Anomaly Detection Model for Cloud Systems. IEEE Transactions 
on Dependable and Secure Computing, 18(5), 2177–2192.

19. Yoshimatsu R. Causal ML for root cause analysis [Electronic re-
source]. — 2025. — Access mode: https://medium.com/@ryutayoshimatsu/
causal-ml-for-root-cause- analysis-ca4fbbc8cad6

20. Gurumurthy R., Schatsky D., Camhi J. Uncovering the con-
nection between digital maturity and financial performance //Deloitte 
Insights. — 2020. — T. 23.

21. IBM. Cloud Pak for AIOps architecture [Electronic resource]. — 
2024. — Access mode: https://www.ibm.com/docs/en/cloud-paks/cloud-
pak-aiops/4.8.0?topic=architecture- cloud-pak-aiops

22. Maddula S. Everything about AIOps in less than 10 minutes 
[Electronic resource]. — 2022. — Access mode: https://suryamaddula.me-
dium.com/everything- about-aiops-in-less-than-10-minutes-693ef1e0f128



68

The Definitive Guide to International Business Expansion

23. Plenum. AIOps Reference Architecture Defined [Electronic re-
source]. — 2024. — Access mode: https://www.plenum-tech.com/wp-con-
tent/uploads/2024/01/AIOps- Reference- Architecture- Defined-1_2.pdf





SCIENTIFIC EDITIONS

THE DEFINITIVE  
GUIDE TO INTERNATIONAL  

BUSINESS EXPANSION

By Miraziz Khidoyatov 

Computer typesetting — Yevhen Tkachenko 

Format 60×84/16.
Offset printing. Offset paper. 

Headset NewCenturySchoolbook. 
Printing 100 copy.

Internauka Publishing House LLC  
Ukraine, Kyiv, street Pavlovskaya, 22, office. 12  

Contact phone: +38 (067) 401-8435 
E-mail: editor@inter-nauka.com 

www.inter-nauka.com 
Certificate of inclusion in the State Register of Publishers 

№ 6275 від 02.07.2018 р.


