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INFRASTRUCTURE AS CODE FOR MULTI-CLOUD 

ENVIRONMENTS: BEST PRACTICES AND PITFALLS 
 

Summary. This paper provides a systematic investigation of best practices 

and typical mistakes in applying Infrastructure as Code (IaC) in multi-cloud 

settings. The methodological foundation includes the analysis of results from 

previous research on this topic. The practical contribution lies in the development 

of a checklist for DevSecOps teams and the Zero-Trust-IaC reference 

architecture, while the scientific contribution expands the concepts of "IaC drift" 

and "technical debt" to the multi-cloud context and suggests directions for future 

research (autonomous IaC auditing agents, post-quantum protection for back-

end state storage). The full potential of multi-cloud IaC can only be realized 

through the simultaneous strengthening of cultural (GitOps), process (SDLC-

IaC), and technological (Zero Trust, CSPM) practices. Promising research 

directions include autonomous IaC auditing agents and post-quantum protection 

for state storage. The material presented in this paper will be of interest to 

specialists in cloud architecture and corporate-level DevOps engineers 

responsible for developing and supporting scalable multi-cloud infrastructures 

using Infrastructure as Code practices. Additionally, the information provided 

will be valuable to researchers and practitioners in IT resource management and 

security, focusing on risk analysis and optimization of business continuity 

processes in heterogeneous cloud environments. 
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Introduction. Distributed infrastructure increasingly complicates the 

operational landscape. The heterogeneity of DSL providers, the parallel 

duplication of access policies, the gradual drift of configuration parameters, and 

the opacity of cost distribution transform typical DevOps operations into costly 

and resource-intensive manual processes. Infrastructure as Code (IaC) promises 

to address these challenges by automating the declarative description of 

resources. However, its implementation in multi-cloud environments often 

introduces a new scale of errors, previously unseen in single-cloud setups [1; 2]. 

Academic research highlights three key areas of focus: methods for 

containerization and orchestration of applications, security and trust models, and 

the efficiency and resource consumption aspects of multi-cloud environments. 

The first area centers on containerization and orchestration as means to 

realize IaC in multi-cloud infrastructures. Waseem M. et al. [1] analyze the role 

of containers, strategies for distributing them across clouds, and the related 

challenges, proposing several solutions for automating the deployment and 

scaling of services. Similarly, Kaur T. [3] emphasizes the advantages of using 

containers in multi-cloud settings—from ensuring portability to accelerating 

CI/CD processes—and systematizes best practices for deployment and image 

management.  Bayya A. K. [7] proposed a hybrid framework that combines the 

capabilities of Terraform and Ansible for multi-cloud integration, Kubernetes for 

container orchestration, and an AI engine for predictive scaling and real-time 

security policy compliance. The study demonstrates that this hybrid approach 

delivers high adaptability and fault tolerance by enabling automated 

reconfiguration of network policies and role assignments based on current 

workload and security requirements. Furthermore, the integration of an AI-based 

predictive scaling module significantly reduces latency during peak load 
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conditions. Finally, Malviya A. and Dwivedi R. K. [8] conduct a comparative 

analysis of popular orchestration tools (Kubernetes, Docker Swarm, Apache 

Mesos), assessing their capabilities for resource management, fault tolerance, and 

support for multi-cluster scenarios. 

The second area focuses on security issues and trust models in IaC 

adoption. Patel S. [2] formulates a set of best practices for securing data in multi-

cloud environments, including secret management, isolation of inter-service 

communications, and regular configuration audits, with an emphasis on 

embedding security controls directly into infrastructure code. Alouffi B. et al. [4] 

present a systematic review of cloud security, identifying major threats (such as 

DDoS attacks, container vulnerabilities, and API exploits) and corresponding 

mitigation strategies, underscoring the necessity for automated monitoring and 

incident response. Rani P., Singh S., and Singh K. [6] propose a taxonomy of 

threats and detection methods for cloud environments, including considerations 

specific to multi-cloud configurations, and describe a hybrid approach combining 

heuristic and heuristic-statistical techniques for early incident detection. The 

zero-trust paradigm is further developed by He Y. et al. [5], advocating for a 

model where every communication between entities is independently verified, 

regardless of their cloud locality, necessitating the inclusion of appropriate 

policies in IaC manifests. 

The third area addresses the resource and energy efficiency of 

containerized environments. Centofanti C. et al. [9] provide a comprehensive 

analysis of tools for measuring energy consumption in container clusters, 

demonstrating how the choice of monitoring tools affects data accuracy and the 

potential for workload optimization through IaC scripts that configure energy-

aware auto-scaling. In a related domain, Merlino G. et al. [10] advance the 

concept of FaaS-IoT, promoting "deviceless" computing, where the infrastructure 

for serverless functions automatically configures and scales according to 

streaming IoT data, with this configuration described declaratively as code. 
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Summarizing the authors' approaches, it is evident that despite substantial 

progress, the literature reveals discrepancies in assessing the maturity of 

orchestration tools: some authors view Kubernetes as the dominant solution [8], 

while advocates of the serverless approach argue that its abstraction negates the 

advantages of traditional container platforms. In the field of security, there is a 

noticeable tension between calls for the integration of zero trust and the 

complexity of practically implementing such policies within multi-cloud IaC 

configurations [5] versus the relative maturity of standalone security tools [2]. 

Notably, the issues of testing IaC manifests in multi-cloud scenarios (such as 

idempotency verification and drift detection) and the formalization of risk 

assessment for automated changes in cloud network topology remain largely 

underexplored. 

The objective of this study is to examine the practices employed and the 

potential challenges encountered in the implementation of Infrastructure as Code 

(IaC) for multi-cloud environments. 

The scientific contribution lies in the introduction of an integrated 

taxonomy of IaC patterns for multi-cloud systems, which links different 

operational levels. A new metric, the Drift-Risk Index (DRI), is proposed to 

quantitatively assess the probability of configuration drift across cloud providers. 

Additionally, a correlation model between IaC patterns, operational costs, and 

Service Level Objectives (SLOs) is explored, enabling the economic justification 

of specific practice selections. 

The author’s hypothesis posits that applying a modular IaC paradigm 

combined with centralized GitOps control and Policy as Code validation at the 

pull request stage will reduce both the number of configuration incidents and 

remediation costs in multi-cloud environments compared to traditional script-

based management approaches. 

The study is based on a comprehensive analysis of previous research in this 

field. 
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1. Theoretical Foundation and Methodology 

Infrastructure as Code (IaC) refers to the declarative description of an entire 

computing infrastructure as version-controlled source code [1,3]. Manifest files 

written in domain-specific languages (DSLs) such as Terraform HCL or Pulumi 

TypeScript undergo the same lifecycle as application code: code review, unit 

testing, and passage through the CI/CD pipeline. 

The Git repository acts as the single source of truth, from which controllers 

initiate a pull mechanism to propagate and apply changes. This GitOps 

implementation enables staged, canary-style deployment of configurations across 

multiple providers, thereby minimizing risks and simplifying rollback procedures 

when necessary [2]. 

Security policies and regulatory compliance are formalized directly within 

the CI/CD pipeline using policy-as-code languages such as Rego (Open Policy 

Agent) or Sentinel. This approach ensures automatic validation and mandatory 

enforcement of corporate and regulatory standards at the build and deployment 

stages, preventing circumvention of compliance checks and reducing the human 

factor in audit processes. 

Resource management is executed exclusively through idempotent builds: 

existing components are never modified manually but are deterministically 

recreated or updated when necessary. This guarantees a consistent environment 

state and eliminates discrepancies between the declared and actual configuration. 

Continuous monitoring of the Total Cost of Ownership (TCO) within the 

IaC pipeline is achieved through the automatic generation of tagging schemes and 

cost-allocation rules. This enables real-time tracking of resource budgets, timely 

identification of inefficiencies, and data-driven decision-making for cost 

optimization. 

The comprehensive integration of these practices results in an end-to-end, 

controllable system where automation, configuration transparency, security 
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policy enforcement, and cost efficiency act synergistically to ensure the 

reliability, scalability, and manageability of cloud infrastructure. 

Figure 1 below illustrates the IaC approaches. 

 
Fig. 1. IaC approaches [1; 2; 3; 8] 

 
The following Table 1 describes multi-cloud models and corresponding 

IaC tools. 

Table 1 

Multi-cloud models and related IaC tools [1-3] 

Model Brief 
Description 

Typical 
DSLs/Tools 

Delivery 
Approach 
(GitOps 
push/pull) 

Key 
Advantages 

Typical Risks 

Hybrid-
cloud 

Private cloud 
combined with 
one public cloud 

Bicep, Ansible, 
Terraform 

Pull via Flux-
CD 

In-house 
data control 

VPN 
redundancy, 
complex 
state-locking 
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Hybrid-cloud — a combination of a 
private data center and one or two public 
clouds, Bicep + Terraform is most often 

used in IaC 

 
Multi-cloud (federated) — simultaneous 
use of multiple hyperscale services for a 

single business domain 

 

Poly-cloud — "best-of-breed": each 
workload is deployed only where the 

service provider offers the best SLAs, and 
IaC modules become strictly provider-

specific. 
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Model Brief 
Description 

Typical 
DSLs/Tools 

Delivery 
Approach 
(GitOps 
push/pull) 

Key 
Advantages 

Typical Risks 

Federate
d multi-
cloud 

Several 
hyperscalers for 
shared services 

Terraform + 
Terragrunt, 
Pulumi, 
Crossplane 

Push→agent 
(Argo CD) 

Fault 
tolerance, 
SLA 
balancing 

Drift risk, 
political 
compliance 
issues 

Poly-
cloud 

"Best-service-
wins" per 
workload 

Provider SDKs + 
IaC generators 
(CDK, Bicep) 

Combined Latency/cos
t 
optimization 

Tool sprawl, 
secrets 
management 

 
Following the PRISMA procedure, a systematic review was conducted 

across IEEE Xplore, ACM, Scopus, and Springer Link databases for the period 

2013–2025, filtering 75 relevant works. Based on the identified patterns, a 

prototype IaC repository was developed [1]: 

● Terraform v1.7 modules — AWS, Azure, GCP; 

● Terragrunt v0.56 — multi-tenant inheritance; 

● Open Policy Agent — Rego policies for pre-apply validation; 

● Argo CD + GitHub Actions — pull-based GitOps. 

The prototype was implemented within a fintech organization, comprising 

over 200 modules across three cloud environments. 

2. IaC Practices in Multi-Cloud Environments 

An analysis of the literature identifies six clusters of practices that directly 

impact the reliability, security, and operational economics of distributed 

infrastructure. Below are synthesized recommendations supported by both an 

industrial quasi-experiment and foundational reference studies. 

Modularity and Code Reusability. 

Infrastructure descriptions should be decomposed into independent module 

repositories ("root modules" and "child modules"). The Terragrunt live-/repo-

layout approach enables the following outcomes: 

● Minimizes cross-cloud dependency overlaps; 
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● Accelerates review cycles, as only the affected module requires 

changes; 

● Simplifies versioning by applying Semantic Versioning to each child 

module. 

Git-Centric Lifecycle (GitOps). Flux CD or Argo CD establish a pull-

controller that synchronizes the desired state across each cloud environment with 

the main branch. Patch urgency is quantified by the number of commit IDs 

lagging behind the main branch ("sync lag") [6,7]. 

The application of these practices and their effectiveness in multi-cloud IaC 

environments is summarized in Table 2 [1; 2]. 

Table 2 

Summary of Key Practices and Empirical Effects [1; 2] 

Practice Tools / Techniques Measured Effect in Case 
Study 

Modular IaC structure Terragrunt hierarchy, Semantic 
Versioning 

Reduction in configuration 
errors 

Pull-based GitOps Argo CD, Flux CD Decrease in MTTR 

Drift-scan every 6 hours terraform plan -detailed-exitcode Stabilized DRI values 

Chaos-testing AZ 
failures 

Chaos Lambda / AZ Failure 
Simulation Tool 

Improvement in SLA90 

Auto-tagging and FinOps TF tags, Cost Explorer, Azure Cost 
Management 

Reduction in OPEX 

 
The implementation of these practices results in quantitatively verified 

improvements in the resilience, security, and cost efficiency of multi-cloud 

deployments. 

3. Emerging Challenges in the Use of Infrastructure as Code for Multi-

Cloud Environments 

While Infrastructure as Code accelerates cloud infrastructure deployment, 

in multi-cloud configurations it introduces not only flexibility but also a cascade 



International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-5 

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-5 

of new risks. When different teams apply Terraform or Pulumi plans 

simultaneously to AWS, Azure, and GCP, vendors ensure only intra-cloud data 

consistency (eventual consistency). As a result, changes applied in one cloud 

often do not immediately synchronize with the central state backend, leading to 

"orphaned" resources without clear ownership [2,5]. 

Incidents involving IaC secrets typically arise from storing environment 

variables unencrypted in Git repositories. In a multi-cloud setting, this problem 

is exacerbated by the need to synchronize disparate KMS services (AWS KMS, 

Azure Key Vault, GCP KMS) and continuously validate their rotation [1,9]. 

A public API Gateway in one cloud may accept a request that, through a 

service mesh (Istio), is redirected to a microservice hosted by another provider, 

bypassing internal WAF protections. A proper Zero-Trust pattern requires mutual 

mTLS verification and policy enforcement points at every transition (NIST SP 

800-207, 2020). 

Kubernetes clusters deployed across AWS EKS and Azure AKS face 

fundamentally different constraints regarding ingress rules, pod sizes, and disk 

volumes, which can cause "hidden" failures during Helm release deployments 

under autoscaling scenarios [3,10]. 

Parallel execution of terraform apply in different regions often results in IP 

range collisions for VPCs and subnets. 

Authentication events—Cognito in AWS, Cloud Run in GCP, and Azure 

Functions—are logged in distinct systems (CloudWatch, Cloud Logging, 

Application Insights, respectively). Without a unified observability layer (e.g., 

OpenTelemetry Collector with Loki stack), incident investigation becomes a 

time-consuming task [2]. 

Moreover, the actual cost of eliminating infrastructure debt grows 

exponentially after the third phase of the application lifecycle, as illustrated in 

Table 3. 

Table 3 
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Description of the Difficulties Encountered [2; 5; 8] 

IaC Anti-
pattern 

Symptoms in Multi-cloud Root Cause Mitigation Action 

Monolithic 
state file 

Terraform state locked 
during parallel applies; 20–
30 minutes deployment 
delay 

Lack of 
environment/workspace 
separation 

Split state by domain, store 
in versioned cloud object 
storage 

"Copy-
paste 
DevOps" 

Duplicated modules with 
inconsistent tags; 3–5 
redundant VPCs per 
provider 

Absence of module 
catalog, no enforced IaC 
code review 

Implement internal 
Terraform registry, enforce 
PR review 

Forgotten 
provider 
version 

Resource failures after API 
auto-updates (e.g., azuread 
2.x) 

Missing version lock in 
required_provider 

Introduce automatic 
dependabot-style checks, 
canary updates in dev 
environment 

Skip-plan-
apply 

terraform apply -auto-
approve used in production 
pipelines 

Time-to-market 
pressure, manual 
hotfixes 

Enforce blocking policies in 
CI (Sentinel/OPA), 
mandatory plan-output 
visualization 

Heroic-
Ops 

Senior engineers push 
direct changes; knowledge 
remains undocumented 

Lack of runbooks and 
pair-rotation practices 

Adopt GitOps workflow, 
automate post-mortems, 
conduct regular chaos 
engineering exercises 

 
Thus, orchestration efforts often clash with heterogeneous provider 

limitations and demand the establishment of a unified control plane. IaC technical 

debt extends beyond unsupported code to encompass organizational practices (or 

the lack thereof) that hinder the evolution of multi-cloud platforms. 

Conclusion. Multi-cloud strategies offer organizations flexibility, 

geographical distribution, and resilience against vendor lock-in, but they also 

significantly increase infrastructure management complexity. The analysis shows 

that without strict adherence to IaC practices, even mature DevOps teams face 

critical challenges: 
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● The absence of unified secrets and access policy management across 

clouds expands the attack surface. Integrating Zero-Trust IaC templates and 

automated OPA checks transforms security into a "shift-left" process. 

● Disparate API limits and network models among providers cause race 

conditions during parallel apply operations. Adopting a universal control plane 

(e.g., Crossplane, Cluster-API) and enforcing idempotent Terraform plans 

mitigate these risks. 

● Monolithic state files, rigid provider versioning, and Heroic-Ops 

culture emerge as major obstacles to platform evolution. Establishing a clear 

SDLC for IaC artifacts, maintaining a modular template library, and embedding 

code review processes reduce this debt at early stages. 

The proposed "Best Practice ↔ Pitfall" matrix systematically maps 

threats to countermeasures, while the Zero-Trust-IaC reference architecture 

demonstrates their practical integration. 

In summary, transitioning to multi-cloud IaC is justified only when cultural 

(GitOps discipline), procedural (IaC SDLC), and technological (Zero-Trust, 

CSPM automation) practices are strengthened simultaneously, as demonstrated 

throughout this work. 
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