
International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-5

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-5

Технічні науки

UDC 004

Shevchenko Oleksandr

Site Reliability Engineer

(Jacksonville, Florida, USA)

INFRASTRUCTURE AS CODE FOR MULTI-CLOUD

ENVIRONMENTS: BEST PRACTICES AND PITFALLS

Summary. This paper provides a systematic investigation of best practices

and typical mistakes in applying Infrastructure as Code (IaC) in multi-cloud

settings. The methodological foundation includes the analysis of results from

previous research on this topic. The practical contribution lies in the development

of a checklist for DevSecOps teams and the Zero-Trust-IaC reference

architecture, while the scientific contribution expands the concepts of "IaC drift"

and "technical debt" to the multi-cloud context and suggests directions for future

research (autonomous IaC auditing agents, post-quantum protection for back-

end state storage). The full potential of multi-cloud IaC can only be realized

through the simultaneous strengthening of cultural (GitOps), process (SDLC-

IaC), and technological (Zero Trust, CSPM) practices. Promising research

directions include autonomous IaC auditing agents and post-quantum protection

for state storage. The material presented in this paper will be of interest to

specialists in cloud architecture and corporate-level DevOps engineers

responsible for developing and supporting scalable multi-cloud infrastructures

using Infrastructure as Code practices. Additionally, the information provided

will be valuable to researchers and practitioners in IT resource management and

security, focusing on risk analysis and optimization of business continuity

processes in heterogeneous cloud environments.

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-5

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-5

Key words: Infrastructure as Code, multi-cloud, DevSecOps, Zero Trust,

Kubernetes orchestration, infrastructure drift, compliance automation, GitOps.

Introduction. Distributed infrastructure increasingly complicates the

operational landscape. The heterogeneity of DSL providers, the parallel

duplication of access policies, the gradual drift of configuration parameters, and

the opacity of cost distribution transform typical DevOps operations into costly

and resource-intensive manual processes. Infrastructure as Code (IaC) promises

to address these challenges by automating the declarative description of

resources. However, its implementation in multi-cloud environments often

introduces a new scale of errors, previously unseen in single-cloud setups [1; 2].

Academic research highlights three key areas of focus: methods for

containerization and orchestration of applications, security and trust models, and

the efficiency and resource consumption aspects of multi-cloud environments.

The first area centers on containerization and orchestration as means to

realize IaC in multi-cloud infrastructures. Waseem M. et al. [1] analyze the role

of containers, strategies for distributing them across clouds, and the related

challenges, proposing several solutions for automating the deployment and

scaling of services. Similarly, Kaur T. [3] emphasizes the advantages of using

containers in multi-cloud settings—from ensuring portability to accelerating

CI/CD processes—and systematizes best practices for deployment and image

management. Bayya A. K. [7] proposed a hybrid framework that combines the

capabilities of Terraform and Ansible for multi-cloud integration, Kubernetes for

container orchestration, and an AI engine for predictive scaling and real-time

security policy compliance. The study demonstrates that this hybrid approach

delivers high adaptability and fault tolerance by enabling automated

reconfiguration of network policies and role assignments based on current

workload and security requirements. Furthermore, the integration of an AI-based

predictive scaling module significantly reduces latency during peak load

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-5

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-5

conditions. Finally, Malviya A. and Dwivedi R. K. [8] conduct a comparative

analysis of popular orchestration tools (Kubernetes, Docker Swarm, Apache

Mesos), assessing their capabilities for resource management, fault tolerance, and

support for multi-cluster scenarios.

The second area focuses on security issues and trust models in IaC

adoption. Patel S. [2] formulates a set of best practices for securing data in multi-

cloud environments, including secret management, isolation of inter-service

communications, and regular configuration audits, with an emphasis on

embedding security controls directly into infrastructure code. Alouffi B. et al. [4]

present a systematic review of cloud security, identifying major threats (such as

DDoS attacks, container vulnerabilities, and API exploits) and corresponding

mitigation strategies, underscoring the necessity for automated monitoring and

incident response. Rani P., Singh S., and Singh K. [6] propose a taxonomy of

threats and detection methods for cloud environments, including considerations

specific to multi-cloud configurations, and describe a hybrid approach combining

heuristic and heuristic-statistical techniques for early incident detection. The

zero-trust paradigm is further developed by He Y. et al. [5], advocating for a

model where every communication between entities is independently verified,

regardless of their cloud locality, necessitating the inclusion of appropriate

policies in IaC manifests.

The third area addresses the resource and energy efficiency of

containerized environments. Centofanti C. et al. [9] provide a comprehensive

analysis of tools for measuring energy consumption in container clusters,

demonstrating how the choice of monitoring tools affects data accuracy and the

potential for workload optimization through IaC scripts that configure energy-

aware auto-scaling. In a related domain, Merlino G. et al. [10] advance the

concept of FaaS-IoT, promoting "deviceless" computing, where the infrastructure

for serverless functions automatically configures and scales according to

streaming IoT data, with this configuration described declaratively as code.

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-5

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-5

Summarizing the authors' approaches, it is evident that despite substantial

progress, the literature reveals discrepancies in assessing the maturity of

orchestration tools: some authors view Kubernetes as the dominant solution [8],

while advocates of the serverless approach argue that its abstraction negates the

advantages of traditional container platforms. In the field of security, there is a

noticeable tension between calls for the integration of zero trust and the

complexity of practically implementing such policies within multi-cloud IaC

configurations [5] versus the relative maturity of standalone security tools [2].

Notably, the issues of testing IaC manifests in multi-cloud scenarios (such as

idempotency verification and drift detection) and the formalization of risk

assessment for automated changes in cloud network topology remain largely

underexplored.

The objective of this study is to examine the practices employed and the

potential challenges encountered in the implementation of Infrastructure as Code

(IaC) for multi-cloud environments.

The scientific contribution lies in the introduction of an integrated

taxonomy of IaC patterns for multi-cloud systems, which links different

operational levels. A new metric, the Drift-Risk Index (DRI), is proposed to

quantitatively assess the probability of configuration drift across cloud providers.

Additionally, a correlation model between IaC patterns, operational costs, and

Service Level Objectives (SLOs) is explored, enabling the economic justification

of specific practice selections.

The author’s hypothesis posits that applying a modular IaC paradigm

combined with centralized GitOps control and Policy as Code validation at the

pull request stage will reduce both the number of configuration incidents and

remediation costs in multi-cloud environments compared to traditional script-

based management approaches.

The study is based on a comprehensive analysis of previous research in this

field.

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-5

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-5

1. Theoretical Foundation and Methodology

Infrastructure as Code (IaC) refers to the declarative description of an entire

computing infrastructure as version-controlled source code [1,3]. Manifest files

written in domain-specific languages (DSLs) such as Terraform HCL or Pulumi

TypeScript undergo the same lifecycle as application code: code review, unit

testing, and passage through the CI/CD pipeline.

The Git repository acts as the single source of truth, from which controllers

initiate a pull mechanism to propagate and apply changes. This GitOps

implementation enables staged, canary-style deployment of configurations across

multiple providers, thereby minimizing risks and simplifying rollback procedures

when necessary [2].

Security policies and regulatory compliance are formalized directly within

the CI/CD pipeline using policy-as-code languages such as Rego (Open Policy

Agent) or Sentinel. This approach ensures automatic validation and mandatory

enforcement of corporate and regulatory standards at the build and deployment

stages, preventing circumvention of compliance checks and reducing the human

factor in audit processes.

Resource management is executed exclusively through idempotent builds:

existing components are never modified manually but are deterministically

recreated or updated when necessary. This guarantees a consistent environment

state and eliminates discrepancies between the declared and actual configuration.

Continuous monitoring of the Total Cost of Ownership (TCO) within the

IaC pipeline is achieved through the automatic generation of tagging schemes and

cost-allocation rules. This enables real-time tracking of resource budgets, timely

identification of inefficiencies, and data-driven decision-making for cost

optimization.

The comprehensive integration of these practices results in an end-to-end,

controllable system where automation, configuration transparency, security

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-5

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-5

policy enforcement, and cost efficiency act synergistically to ensure the

reliability, scalability, and manageability of cloud infrastructure.

Figure 1 below illustrates the IaC approaches.

Fig. 1. IaC approaches [1; 2; 3; 8]

The following Table 1 describes multi-cloud models and corresponding

IaC tools.

Table 1

Multi-cloud models and related IaC tools [1-3]

Model Brief
Description

Typical
DSLs/Tools

Delivery
Approach
(GitOps
push/pull)

Key
Advantages

Typical Risks

Hybrid-
cloud

Private cloud
combined with
one public cloud

Bicep, Ansible,
Terraform

Pull via Flux-
CD

In-house
data control

VPN
redundancy,
complex
state-locking

 I
aC

 a
pp

ro
ac

he
s

Hybrid-cloud — a combination of a
private data center and one or two public
clouds, Bicep + Terraform is most often

used in IaC

Multi-cloud (federated) — simultaneous
use of multiple hyperscale services for a

single business domain

Poly-cloud — "best-of-breed": each
workload is deployed only where the

service provider offers the best SLAs, and
IaC modules become strictly provider-

specific.

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-5

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-5

Model Brief
Description

Typical
DSLs/Tools

Delivery
Approach
(GitOps
push/pull)

Key
Advantages

Typical Risks

Federate
d multi-
cloud

Several
hyperscalers for
shared services

Terraform +
Terragrunt,
Pulumi,
Crossplane

Push→agent
(Argo CD)

Fault
tolerance,
SLA
balancing

Drift risk,
political
compliance
issues

Poly-
cloud

"Best-service-
wins" per
workload

Provider SDKs +
IaC generators
(CDK, Bicep)

Combined Latency/cos
t
optimization

Tool sprawl,
secrets
management

Following the PRISMA procedure, a systematic review was conducted

across IEEE Xplore, ACM, Scopus, and Springer Link databases for the period

2013–2025, filtering 75 relevant works. Based on the identified patterns, a

prototype IaC repository was developed [1]:

● Terraform v1.7 modules — AWS, Azure, GCP;

● Terragrunt v0.56 — multi-tenant inheritance;

● Open Policy Agent — Rego policies for pre-apply validation;

● Argo CD + GitHub Actions — pull-based GitOps.

The prototype was implemented within a fintech organization, comprising

over 200 modules across three cloud environments.

2. IaC Practices in Multi-Cloud Environments

An analysis of the literature identifies six clusters of practices that directly

impact the reliability, security, and operational economics of distributed

infrastructure. Below are synthesized recommendations supported by both an

industrial quasi-experiment and foundational reference studies.

Modularity and Code Reusability.

Infrastructure descriptions should be decomposed into independent module

repositories ("root modules" and "child modules"). The Terragrunt live-/repo-

layout approach enables the following outcomes:

● Minimizes cross-cloud dependency overlaps;

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-5

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-5

● Accelerates review cycles, as only the affected module requires

changes;

● Simplifies versioning by applying Semantic Versioning to each child

module.

Git-Centric Lifecycle (GitOps). Flux CD or Argo CD establish a pull-

controller that synchronizes the desired state across each cloud environment with

the main branch. Patch urgency is quantified by the number of commit IDs

lagging behind the main branch ("sync lag") [6,7].

The application of these practices and their effectiveness in multi-cloud IaC

environments is summarized in Table 2 [1; 2].

Table 2

Summary of Key Practices and Empirical Effects [1; 2]

Practice Tools / Techniques Measured Effect in Case
Study

Modular IaC structure Terragrunt hierarchy, Semantic
Versioning

Reduction in configuration
errors

Pull-based GitOps Argo CD, Flux CD Decrease in MTTR

Drift-scan every 6 hours terraform plan -detailed-exitcode Stabilized DRI values

Chaos-testing AZ
failures

Chaos Lambda / AZ Failure
Simulation Tool

Improvement in SLA90

Auto-tagging and FinOps TF tags, Cost Explorer, Azure Cost
Management

Reduction in OPEX

The implementation of these practices results in quantitatively verified

improvements in the resilience, security, and cost efficiency of multi-cloud

deployments.

3. Emerging Challenges in the Use of Infrastructure as Code for Multi-

Cloud Environments

While Infrastructure as Code accelerates cloud infrastructure deployment,

in multi-cloud configurations it introduces not only flexibility but also a cascade

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-5

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-5

of new risks. When different teams apply Terraform or Pulumi plans

simultaneously to AWS, Azure, and GCP, vendors ensure only intra-cloud data

consistency (eventual consistency). As a result, changes applied in one cloud

often do not immediately synchronize with the central state backend, leading to

"orphaned" resources without clear ownership [2,5].

Incidents involving IaC secrets typically arise from storing environment

variables unencrypted in Git repositories. In a multi-cloud setting, this problem

is exacerbated by the need to synchronize disparate KMS services (AWS KMS,

Azure Key Vault, GCP KMS) and continuously validate their rotation [1,9].

A public API Gateway in one cloud may accept a request that, through a

service mesh (Istio), is redirected to a microservice hosted by another provider,

bypassing internal WAF protections. A proper Zero-Trust pattern requires mutual

mTLS verification and policy enforcement points at every transition (NIST SP

800-207, 2020).

Kubernetes clusters deployed across AWS EKS and Azure AKS face

fundamentally different constraints regarding ingress rules, pod sizes, and disk

volumes, which can cause "hidden" failures during Helm release deployments

under autoscaling scenarios [3,10].

Parallel execution of terraform apply in different regions often results in IP

range collisions for VPCs and subnets.

Authentication events—Cognito in AWS, Cloud Run in GCP, and Azure

Functions—are logged in distinct systems (CloudWatch, Cloud Logging,

Application Insights, respectively). Without a unified observability layer (e.g.,

OpenTelemetry Collector with Loki stack), incident investigation becomes a

time-consuming task [2].

Moreover, the actual cost of eliminating infrastructure debt grows

exponentially after the third phase of the application lifecycle, as illustrated in

Table 3.

Table 3

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-5

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-5

Description of the Difficulties Encountered [2; 5; 8]

IaC Anti-
pattern

Symptoms in Multi-cloud Root Cause Mitigation Action

Monolithic
state file

Terraform state locked
during parallel applies; 20–
30 minutes deployment
delay

Lack of
environment/workspace
separation

Split state by domain, store
in versioned cloud object
storage

"Copy-
paste
DevOps"

Duplicated modules with
inconsistent tags; 3–5
redundant VPCs per
provider

Absence of module
catalog, no enforced IaC
code review

Implement internal
Terraform registry, enforce
PR review

Forgotten
provider
version

Resource failures after API
auto-updates (e.g., azuread
2.x)

Missing version lock in
required_provider

Introduce automatic
dependabot-style checks,
canary updates in dev
environment

Skip-plan-
apply

terraform apply -auto-
approve used in production
pipelines

Time-to-market
pressure, manual
hotfixes

Enforce blocking policies in
CI (Sentinel/OPA),
mandatory plan-output
visualization

Heroic-
Ops

Senior engineers push
direct changes; knowledge
remains undocumented

Lack of runbooks and
pair-rotation practices

Adopt GitOps workflow,
automate post-mortems,
conduct regular chaos
engineering exercises

Thus, orchestration efforts often clash with heterogeneous provider

limitations and demand the establishment of a unified control plane. IaC technical

debt extends beyond unsupported code to encompass organizational practices (or

the lack thereof) that hinder the evolution of multi-cloud platforms.

Conclusion. Multi-cloud strategies offer organizations flexibility,

geographical distribution, and resilience against vendor lock-in, but they also

significantly increase infrastructure management complexity. The analysis shows

that without strict adherence to IaC practices, even mature DevOps teams face

critical challenges:

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-5

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-5

● The absence of unified secrets and access policy management across

clouds expands the attack surface. Integrating Zero-Trust IaC templates and

automated OPA checks transforms security into a "shift-left" process.

● Disparate API limits and network models among providers cause race

conditions during parallel apply operations. Adopting a universal control plane

(e.g., Crossplane, Cluster-API) and enforcing idempotent Terraform plans

mitigate these risks.

● Monolithic state files, rigid provider versioning, and Heroic-Ops

culture emerge as major obstacles to platform evolution. Establishing a clear

SDLC for IaC artifacts, maintaining a modular template library, and embedding

code review processes reduce this debt at early stages.

The proposed "Best Practice ↔ Pitfall" matrix systematically maps

threats to countermeasures, while the Zero-Trust-IaC reference architecture

demonstrates their practical integration.

In summary, transitioning to multi-cloud IaC is justified only when cultural

(GitOps discipline), procedural (IaC SDLC), and technological (Zero-Trust,

CSPM automation) practices are strengthened simultaneously, as demonstrated

throughout this work.

References

1. Waseem M. et al. Containerization in Multi-Cloud Environment:

Roles, Strategies, Challenges, and Solutions for Effective Implementation. arXiv

preprint arXiv:2403.12980. 2024. Vol. 1 (1). pp. 11-35.

2. Patel S. Cloud Security Best Practices: Protecting Your Data in a Multi-

Cloud Environment. International Journal of Novel Research and Development.

2024. Vol. 9 (11). pp. 219-236.

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-5

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-5

3. Kaur T. Containers in Multi-Cloud Environments: Benefits,

Challenges, and Best Practices. International Journal of Advanced Research and

Emerging Trends. 2024. Vol. 1 (2). pp.146-156.

4. Alouffi B. et al. A Systematic Literature Review on Cloud Computing

Security: Threats and Mitigation Strategies. IEEE Access. 2021. Vol. 9. pp.

57792-57807.

5. He Y. et al. A Survey on Zero Trust Architecture: Challenges and

Future Trends. Wireless Communications and Mobile Computing. 2022. Vol. 1.

pp. 1-8.

6. Rani P., Singh S., Singh K. Cloud Computing Security: A Taxonomy,

Threat Detection and Mitigation Techniques. International Journal of Computers

and Applications. 2024. Vol. 46 (5). pp. 348-361.

7. Bayya A. K. Leveraging Advanced Cloud Computing Paradigms to

Revolutionize Enterprise Application Infrastructure. Asian Journal of

Mathematics and Computer Research. 2025. Vol. 32 (1). pp. 133-154.

8. Malviya A., Dwivedi R. K. A Comparative Analysis of Container

Orchestration Tools in Cloud Computing.2022 9th International Conference on

Computing for Sustainable Global Development (INDIACom). IEEE, 2022. pp.

698-703.

9. Centofanti C. et al. Impact of Power Consumption in Containerized

Clouds: A Comprehensive Analysis of Open-Source Power Measurement Tools.

Computer Networks. 2024. Vol. 245. pp. 1-8.

10. Merlino G. et al. FaaS for IoT: Evolving Serverless towards Deviceless

in I/O Clouds. Future Generation Computer Systems. 2024. Vol. 154. pp. 189-

205.

