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Summary. This article explores architectural solutions and technological 

approaches for implementing real-time applications in the modern digital 

environment. The relevance of the topic is driven by the rapid growth of 

streaming data volumes and the need for their immediate processing, which 

requires a rethinking of traditional approaches and the application of new 

architectural models. The novelty of the research lies in the comprehensive 

analysis and systematization of various architectural solutions, such as 

microservices architecture, event-driven systems (EDA), reactive systems, edge 

computing, and the use of streaming platforms (Kafka, RabbitMQ). The paper 

describes the key requirements for real-time systems, including minimizing 

latency, fault tolerance, elasticity, and high throughput. The study examines 

widely used English-language sources from open access, including reviews, 

technical reports, and case studies from companies (Netflix, Amazon, banking 

systems, and trading platforms). Special attention is given to analyzing the 

advantages and disadvantages of each architectural approach, as well as 

practical recommendations for their implementation. The conclusion summarizes 

which combinations of architectural solutions are most effective for specific types 

of tasks. This article will be useful for architects, engineers, and specialists 

working with high-load real-time systems. 
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Introduction. Traditional architectural approaches (such as monolithic 

servers with periodic batch processing of data) often do not meet the requirements 

of real-time processing. As a result, the industry has developed new architectural 

solutions and design patterns. These include microservices architecture, event-

driven architecture, edge computing, the use of message queues and streaming 

platforms (Kafka, RabbitMQ, etc.), reactive systems, and others. 

It is necessary to understand which architectural approaches and solutions 

enable the creation of applications capable of operating in real-time in a 

distributed digital environment (such as cloud and network conditions). 

This article aims to: 

● Analyze the main architectural patterns and technologies applicable 

to real-time systems; 

● Review examples of real-world applications with specific latency 

requirements; 

● Evaluate the advantages and limitations of various approaches 

(e.g., microservices vs monolithic in the context of real-time; cloud vs edge 

computing; use of asynchronous message exchange, etc.). 

The relevance of this topic is driven by the rapid growth in data volumes 

and the demand for their immediate processing. According to a recent review, an 

increasing number of organizations are complementing traditional batch 

architectures with streaming architectures to process data "on the fly" [7]. Real-

time architecture has become a necessary condition for competitiveness in many 

fields – for example, financial companies invest in low-latency infrastructure, 

while online services invest in ensuring instant user experiences. Therefore, the 
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question of how to correctly design the architecture of such systems is of 

significant interest both to the scientific community and to practicing architects. 

Materials and Methods. For this review, English-language academic 

publications from open access [9] were used (e.g., the journal Sensors – 

architectures for IoT [6]). Specifically, the results of the following sources were 

applied: review articles on real-time stream processing and Big Data [1; 5] (e.g., 

DZone Refcardz 2023 [8]), industry reports [4] (such as the AWS technical blog 

on real-time analytics patterns [10]), as well as practical case studies described in 

the blogs of tech companies (Upsolver, Tinybird, etc.) [7; 11]. Significant 

attention was given to the Reactive Manifesto [2-3] and related materials, which 

define the principles for building high-load responsive systems. 

The work was conducted as a systematic review of architectural solutions. 

A classification of the main approaches was created, which formed the basis for 

the structure of the results. 

Results. Before discussing the architectures, it is important to clarify what 

is meant by real-time applications in the context of the digital (mainly network 

and cloud) environment. Unlike strict real-time systems (such as flight control 

systems, where there are strict deadlines in microseconds), most web and business 

applications belong to the class of soft real-time systems – they aim to minimize 

processing delays to ensure high responsiveness but do not have absolute 

deadlines. For example, for a user-facing web service, an interactive response 

within ~100 milliseconds is perceived as instantaneous. For a real-time analytics 

system, receiving insights in seconds instead of minutes already provides a 

business advantage [7]. Therefore, the goal of the architecture is to minimize 

latency (time from event/request to response) and ensure high throughput (to 

handle the stream of events). The main requirements for real-time application 

architectures are: 

● Minimizing delays at all stages (input, processing, output). High-

performance communication is used, and long-blocking operations are avoided. 
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● Concurrency and parallelism. Often, many events need to be 

processed simultaneously, so the architecture must be scalable and support 

parallel processing (multithreading, distribution across nodes). 

● Resilience. Real-time services must operate continuously. A failure 

of one component should not stop the entire system – failure isolation and quick 

recovery are necessary [3]. 

● Elasticity. The load may increase dramatically (a surge in events), 

so the architecture must scale easily (horizontally in the cloud or using reserves). 

● Data sequence. In some real-time systems (e.g., financial systems), 

it is important to correctly order events. The architecture must either guarantee 

ordering or be able to work without strict consistency (which is simpler for 

performance but creates logic complexity) [8]. 

Considering these requirements, several architectural approaches have 

emerged in the industry. 

Microservices Architecture and its Role in Real-Time 

Microservices is an architectural style where an application consists of 

numerous small, independent services, each of which performs a well-defined 

function, and they interact with each other through clear interfaces (most 

commonly network APIs) [4]. This approach became popular thanks to 

companies like Netflix and Amazon, who were the first to scale their monolithic 

applications into a set of microservices for better manageability. However, in 

addition to organizational advantages (division of development across teams), 

microservices also provide technical benefits for real-time systems. 

They allow hot components to be scaled independently. For instance, if the 

service responsible for processing incoming events becomes a bottleneck, it can 

be scaled up by running more instances without affecting other parts of the 

system. This corresponds to the requirement for elasticity – resources are added 

dynamically to meet load [3]. 
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Microservices often communicate asynchronously (through message 

queues, brokers), which supports resilience and low coupling. Instead of 

synchronously calling another module and waiting for a response (which creates 

delay and the risk of cascading failures), a service can send a message and 

continue working. This message-driven communication is one of the principles 

of reactive systems [3]. It improves decoupling of components and allows the 

system to remain responsive even when partial issues occur. 

In a microservices architecture, it is easier to apply specialized 

optimizations for individual services. For example, a service responsible for 

caching frequently requested data can operate in memory (in-memory store) for 

instant access, while another service can write to a reliable storage. The functional 

separation facilitates targeted optimization to meet real-time requirements for 

specific parts. 

However, microservices also have drawbacks when applied to real-time 

systems. 

A call from one microservice to another over the network can take 

milliseconds, whereas a function call within a monolith takes tens of 

nanoseconds. For systems that require ultra-low latency (such as algorithmic 

trading), microservices can introduce unacceptable delays due to network calls. 

A practical solution is to minimize the number of hops between services along 

the critical path. For example, the critical data flow is processed within 1-2 

services, rather than being routed through a dozen. 

In a distributed microservices environment, performing ACID transactions 

across services is challenging. As a result, systems often need to shift to eventual 

consistency (where data is eventually synchronized). This is acceptable for many 

real-time systems (e.g., in an analytics system, instant consistency is not required, 

and it is acceptable if the data is updated after a few seconds). However, for 

applications like stock exchanges, more complex mechanisms need to be 

implemented. 
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Real-time microservices can generate huge streams of logs and events. 

Tracking where the delay occurs is non-trivial. Distributed tracing systems and 

queue monitoring need to be implemented, which increases infrastructure 

complexity. 

Nevertheless, the experience of large companies shows that the benefits of 

microservices outweigh the challenges when implemented correctly. For 

example, Netflix processes trillions of events per day using hundreds of 

microservices – this architecture has proven capable of servicing millions of users 

simultaneously with minimal latency (video stream buffering, real-time 

recommendations, etc.). 

Thus, microservices architecture supports real-time operations through 

scalability and component isolation but requires thoughtful interaction design 

(such as asynchronous messaging and caching) and significant engineering 

support (monitoring) to meet latency requirements. In practice, microservices are 

often combined with other approaches – such as event-driven integration through 

streaming platforms, which will be discussed further. 

Event-Driven Architecture and Stream Processing 

Event-driven architecture (EDA) is an architectural pattern in which the 

interaction between components is built around message-based events. 

Application components generate events (for example, "user clicked a button," 

"sensor sent a new measurement," "transaction completed"), and they respond to 

events received from other components, often through an intermediary – an event 

bus or message broker. In the context of real-time systems, EDA plays a central 

role because it allows information to be processed immediately upon the 

occurrence of an event, without waiting for scheduled requests. The main 

elements of EDA (see Table 1) are: 
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Table 1 

Key Components and Advantages of Event-Driven Architecture (EDA) 

Component 
/ Advantage 

Description 

Message 
queues / 
event 
streams 

Infrastructure for transferring events from sources to subscribers. Brokers such 
as Apache Kafka, RabbitMQ, AWS Kinesis, and Google Pub/Sub are used. 
These are optimized for high throughput and minimal latency. Kafka, in 
particular, handles millions of messages per second. 

Event 
processors 

Independent services (often microservices) that respond to specific events. 
Each processor executes its own logic, such as generating receipts, fraud 
detection, updating recommendations, etc. These services work concurrently 
with the same data. 

Loose 
coupling of 
components 

Components do not interact directly – interaction occurs through events. If an 
event processor is unavailable, events are stored in queues, ensuring the 
continuity of other parts of the system. 

Asynchrony No blocking in the processing flow: when specific event handlers are busy, the 
system continues to accept new events. 

Horizontal 
scalability 

As load increases, new handlers subscribed to the same events are added. Load 
distribution occurs automatically, and this approach is especially effective 
when handling telemetry streams and other large-scale streaming data. 

Event 
ordering and 
retention 

Brokers (especially Kafka) store events in logs, allowing for delayed reading. 
This enables replaying streams for debugging or reprocessing, such as when 
updating algorithms. Logging also helps mitigate temporary load spikes, 
preventing data loss. 

 
An example of event-driven architecture is a stock market data streaming 

analytics system: incoming stock quotes are published to a Kafka topic, from 

which several services read them concurrently – one calculates aggregates (e.g., 

moving averages), another checks trading strategies, and a third sends 

notifications about significant changes to clients. All these actions happen almost 

simultaneously with each new quote arrival, ensuring an "analyze-as-you-go" 

approach. 
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It is worth mentioning the Lambda and Kappa architectures – these are big 

data processing patterns (see Figure 1). 

 
Fig. 1. Difference between Kappa and Lambda architectures [1] 

 
The Lambda architecture splits processing into two paths: the batch layer 

(long-term batch processing for precise final data) and the speed layer (real-time 

stream processing with approximate data). This is an attempt to combine accuracy 

with performance. However, this scheme is complex, leading to the emergence 

of a simplified version – the Kappa architecture, where only stream processing is 

used (everything is treated as a continuous stream of events). In real-time 

applications, the Kappa architecture is more commonly used, especially with the 

advent of powerful stream analytics engines (e.g., Flink, Spark Structured 

Streaming), which can deliver results in a matter of seconds or milliseconds, 

previously requiring minute-long batch processing [1]. 

Limitations of EDA. The primary challenge is the complexity of 

development. Data resynchronization, the lack of global transactionality (each 

service works with its portion of events), and the complexity of debugging event 

sequences can all be problematic. Furthermore, event-driven systems require 
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thoughtful monitoring – it is important to track delays in queues and message 

“sticking.” Tools such as Kafka Streams or Flink ease some of these challenges 

by providing high-level APIs for event processing (such as counters, time 

windows, etc.). 

In general, event-driven architectures are the cornerstone of real-time 

systems, allowing for a natural description of reactive behavior: "received an 

event – processed it immediately, triggered new events," and so on. Many modern 

high-load systems are built around this paradigm. 

Reactive Systems 

The concept of Reactive Systems combines several principles, already 

discussed, into a unified development philosophy outlined in the Reactive 

Manifesto. According to this manifesto, a reactive system should be Responsive, 

Resilient, Elastic, and Message-Driven [2]. Essentially, this is a set of principles 

for building distributed real-time systems. The reactive approach emphasizes: 

1. Asynchrony and non-blocking I/O. The use of tools like reactive 

programming libraries (RxJava, Reactor) enables writing code that does not block 

threads while waiting for results, instead using callbacks and completion events. 

This increases the number of concurrent operations without increasing the 

number of threads. For example, a web server on a reactive stack (Vert.x, Akka) 

can handle more requests on a single core than a traditional server with threads 

per request. 

2. Component isolation and actors. A popular implementation of the 

reactive approach is the actor model, as seen in the Akka Toolkit. Actors are 

objects that communicate only by sending messages and process them 

sequentially, one at a time. This guarantees no concurrent conflicts within the 

actor, improving reliability. Actors can be easily distributed across nodes and 

support transparent recovery (Supervision strategies). This model greatly 

simplifies building fault-tolerant systems: if an actor fails, its parent restarts a new 

one without causing a global system crash. Many real-time telecom systems (e.g., 



International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-4 

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-4 

WhatsApp, based on the Erlang/OTP actor model) have proven enormous 

scalability (millions of simultaneous connected users) with this architecture. 

3. Back-pressure. Reactive systems include mechanisms to prevent 

overload: when a consumer cannot process events fast enough, it signals the 

source to reduce the rate. This is important to ensure that the system doesn't get 

overwhelmed during a flood of events. In a reactive stack (e.g., Reactive Streams 

specification in Java), back-pressure is built-in – consumers request a specific 

number of elements from the source, no more. 

An example of a reactive system is Netflix's request-processing system. 

They used RxJava to orchestrate multiple external calls (to recommendation 

services, ratings, and databases) while forming the user's homepage. The reactive 

code allowed the system to collect data asynchronously with minimal delay, and 

if any service was slow, the system didn’t completely block, but could partially 

display the interface. Another example is multiplayer online games. In a 

multiplayer game, it is essential that player actions are sent to others almost 

instantly. A reactive architecture based on actors can implement “rooms” (game 

sessions) as actors that receive events from players, update the game state, and 

send events to all participants. This approach scales well to hundreds of thousands 

of rooms with minimal latency within each one. 

Limitations of the Reactive Approach: It is relatively complex for 

developers used to sequential programming. Debugging asynchronous code is 

harder. Also, a strictly reactive approach (e.g., requiring everything to be done 

via messages) is not always justified for simple applications – it can unnecessarily 

complicate the system. Therefore, a hybrid approach is often chosen: critical 

paths are made reactive, while non-critical components can be implemented more 

simply. 

In conclusion, reactive architectures are more of a set of principles and best 

practices that help build real-time systems that meet the requirements of 

reliability and scalability. In practice, their implementation may be based on 
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microservices and events, but with the use of reactive frameworks and tools that 

ensure non-blocking operations. 

Distributed Processing at the Edge 

The classical approach of sending all data to the cloud or a data center can 

lead to unacceptable delays, especially when data sources are far away or when 

instant reactions are required (e.g., equipment control). Edge computing is an 

architectural solution where part of the computation is moved as close as possible 

to the data source, to the “edge” of the network. These can be local servers within 

the same network as the sensors, or directly smart devices/gateways capable of 

performing computations. Edge architecture reduces network latency. For 

example, in an industrial facility, machine sensors are connected to a local edge 

server, and vibration analysis is performed on it in real-time. Only the results or 

significant events are sent to the cloud for long-term storage. If all the data were 

sent to the cloud, the transmission + processing delay could be more than what is 

acceptable for preventing an accident. In fact, researchers note that for time-

critical IIoT (Industrial Internet of Things) applications, the use of edge 

components is a necessary condition; otherwise, even small network delays can 

lead to critical situations [6; 9]. 

Architecturally, edge computing typically works in tandem with the cloud, 

forming a multi-tier architecture (see Figure 2): 
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Fig. 2. Edge-to-Cloud Architecture Layers [5] 

 
In Figure 2, the data flows are indicated by arrows: most of the data is 

processed at the middle layer (closer to the source), and only a portion is 

transmitted to the cloud. This architecture reduces latency and unloads the main 

network channels (Image: Psenda38, CC0). Edge architecture is widely used in 

5G/6G networks, where the concept of Multi-access Edge Computing (MEC) 

involves placing servers directly within the telecommunications operator's 

infrastructure, near base stations. This allows, for example, streaming gaming 

services to place game servers closer to the player, achieving minimal ping. In 

5G deployments, operators are collaborating with cloud companies to provide 

edge computing as a service. 

Limitations of the Edge Approach: The need to deploy and maintain a large 

number of distributed nodes (which is more complex than simply keeping 

everything in one data center), potential security issues (since many nodes on the 

perimeter need protection), and the fact that edge often has limited computational 

resources (you can't infinitely increase algorithm complexity on a small node). 

Therefore, the architectural solution typically is as follows: critical parts of the 
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logic (such as pre-filtering, simple ML models for event detection) reside at the 

edge, while heavy processing (complex analytics, model training) is done in the 

cloud, where there are no resource limitations [6]. 

Examples of Architectures and Their Effectiveness 

To link the discussed solutions with practice, let's consider several 

examples of real-time applications and the architectural solutions applied (see 

Table 2): 

Table 2 

Examples of real-time applications and the applied architectural solutions 

Example Requirement Solution Architecture / 
Technologies 

Result 

Fraud 
monitoring in a 
bank 

Check each 
transaction for 
fraud in 
milliseconds 
before approval 

Transaction stream 
via Kafka, parallel 
fraud checks by 
microservices using 
different rules 

Event-driven 
pipeline, 
microservices, in-
memory session 
store 

<50 ms per 
transaction, 
fault 
tolerance 

Social network / 
news platform 

Immediate 
delivery of new 
posts to millions 
of subscribers 

Fan-out events via 
queue, shard 
subscribers across 
servers 

Pub-sub model, 
distributed queues 
(e.g., HDFS + 
Earlybird), load 
balancing 

Delivery 
delay of 
hundreds of 
ms at high 
volumes 

Cryptocurrency 
exchange 

Process hundreds 
of thousands of 
requests per 
second with 
minimal delay 

Actor model: one 
actor per trading 
instrument, order = 
message 

Actors on a 
cluster, pub-sub 
via broker (e.g., 
NATS.io), in-
memory 
processing 

Sequence 
and 
execution 
speed 
(within ms) 

Source: compiled by the author based on their own research 

 
These examples show that combining multiple approaches is common. 

Microservices and actors can be combined with event-driven connectivity; edge 

computing can work alongside cloud streaming. A real-time system architect 

must combine tools based on the best fit for the specific task's requirements. A 

clear illustration of the value of real-time approaches is the "data value vs time" 
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graph (Figure 3). It shows that immediately after generation, data holds the 

highest value for business (for example, knowing that a user is currently viewing 

a product is highly valuable for showing relevant ads), but over time, its value 

exponentially decreases [11]. Real-time architectures allow benefits to be 

extracted while the data is "hot." This principle drives investments in the 

architectural solutions described. 

 
Fig. 3. Schematic representation of the decline in data value over time [11] 

 
The green curve shows that data is most valuable immediately after it is 

generated, and then the value of the information quickly declines. The area on the 

left (highlighted in blue) represents the time interval during which real-time 

analytics can extract maximum benefit, before the data "cools down." Real-time 

architectures are aimed at processing data during this critical early phase. 

Conclusion. Architectural decisions are a key factor in the successful 

implementation of real-time applications. The conducted review allows for the 

following conclusions: 

1. Asynchronous distributed architectures dominate in digital real-time 

systems. The microservices approach, combined with event-driven 
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communications, has proven effective in ensuring low latency and high 

scalability. Such systems can remain responsive even under heavy loads due to 

parallel processing and component isolation. 

2. Reactive principles (Responsive, Resilient, Elastic, Message-

Driven) provide guidelines for design. In practice, this means: using queues and 

non-blocking I/O, implementing fault tolerance mechanisms (replication, 

automatic service restart), horizontal scaling based on load, and service 

interactions through asynchronous messaging. Implementing these principles 

(e.g., the Akka actor model) enables the creation of systems that continue to 

function correctly despite node failures and can easily scale to handle increased 

event traffic. 

3. Edge computing is an important component of real-time solutions 

when minimizing network latency or ensuring local autonomy is required. 

Offloading part of the computation to the edge of the network (at factories, 

devices, or 5G MEC nodes) significantly reduces response time for critical 

applications (industrial control, autopilots, etc.). This architectural solution is 

recommended when the "physics" of data transmission (light speed, network 

hops) becomes a limiting factor. 

4. Compromises are inevitable. Distributed real-time systems must 

balance data consistency and availability (according to the CAP theorem). A 

practical takeaway for developers is to identify in advance where strict 

consistency can be sacrificed for performance. For example, caching data on 

different nodes may lead to discrepancies of a few milliseconds – is this 

acceptable? For most user applications, yes; for financial calculations, probably 

not. The architecture should account for these requirements. 

Examples have shown the effectiveness of patterns. Thanks to event-driven 

architecture, financial systems can detect fraud within tens of milliseconds, while 

social networks can spread messages almost instantaneously around the world. 

This has resulted in a significant advantage: companies can make decisions and 
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respond "on the freshest data," improving service quality and gaining competitive 

advantages (e.g., a more personalized user experience based on current actions, 

not yesterday’s). 

Practical recommendations: When designing a real-time application, one 

should: analyze the nature of the load (constant flow vs. event bursts) and choose 

an architecture capable of scaling dynamically (microservices + queue); identify 

components that are critical for latency – place them as close to the data source 

as possible and implement them with the fastest technologies (e.g., C++ service 

on the edge); use ready-made high-performance solutions: distributed streaming 

platforms (Kafka, Pulsar) for event exchange, in-memory data grids (Redis, 

Hazelcast) for caching hot data, asynchronous web servers for the frontend; 

integrate monitoring and back-pressure from the start. Without this, there is a risk 

that the system will only perform well up to a certain load threshold and then 

enter a degradation mode. A well-designed architecture ensures smooth 

degradation (disabling secondary features) instead of a crash. 
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