
International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-4

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-4

Технічні науки

УДК 004

Perih Anastasiia

Full Stack Software Engineer at Northspyre

Jersey City, NJ, US

ARCHITECTURAL SOLUTIONS FOR IMPLEMENTING REAL-TIME

APPLICATIONS IN THE DIGITAL ENVIRONMENT

Summary. This article explores architectural solutions and technological

approaches for implementing real-time applications in the modern digital

environment. The relevance of the topic is driven by the rapid growth of

streaming data volumes and the need for their immediate processing, which

requires a rethinking of traditional approaches and the application of new

architectural models. The novelty of the research lies in the comprehensive

analysis and systematization of various architectural solutions, such as

microservices architecture, event-driven systems (EDA), reactive systems, edge

computing, and the use of streaming platforms (Kafka, RabbitMQ). The paper

describes the key requirements for real-time systems, including minimizing

latency, fault tolerance, elasticity, and high throughput. The study examines

widely used English-language sources from open access, including reviews,

technical reports, and case studies from companies (Netflix, Amazon, banking

systems, and trading platforms). Special attention is given to analyzing the

advantages and disadvantages of each architectural approach, as well as

practical recommendations for their implementation. The conclusion summarizes

which combinations of architectural solutions are most effective for specific types

of tasks. This article will be useful for architects, engineers, and specialists

working with high-load real-time systems.

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-4

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-4

Key words: real-time applications, microservices architecture, event-

driven architecture, stream processing, Kafka, reactive systems, edge computing,

scalability, latency minimization, asynchronous processing.

Introduction. Traditional architectural approaches (such as monolithic

servers with periodic batch processing of data) often do not meet the requirements

of real-time processing. As a result, the industry has developed new architectural

solutions and design patterns. These include microservices architecture, event-

driven architecture, edge computing, the use of message queues and streaming

platforms (Kafka, RabbitMQ, etc.), reactive systems, and others.

It is necessary to understand which architectural approaches and solutions

enable the creation of applications capable of operating in real-time in a

distributed digital environment (such as cloud and network conditions).

This article aims to:

● Analyze the main architectural patterns and technologies applicable

to real-time systems;

● Review examples of real-world applications with specific latency

requirements;

● Evaluate the advantages and limitations of various approaches

(e.g., microservices vs monolithic in the context of real-time; cloud vs edge

computing; use of asynchronous message exchange, etc.).

The relevance of this topic is driven by the rapid growth in data volumes

and the demand for their immediate processing. According to a recent review, an

increasing number of organizations are complementing traditional batch

architectures with streaming architectures to process data "on the fly" [7]. Real-

time architecture has become a necessary condition for competitiveness in many

fields – for example, financial companies invest in low-latency infrastructure,

while online services invest in ensuring instant user experiences. Therefore, the

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-4

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-4

question of how to correctly design the architecture of such systems is of

significant interest both to the scientific community and to practicing architects.

Materials and Methods. For this review, English-language academic

publications from open access [9] were used (e.g., the journal Sensors –

architectures for IoT [6]). Specifically, the results of the following sources were

applied: review articles on real-time stream processing and Big Data [1; 5] (e.g.,

DZone Refcardz 2023 [8]), industry reports [4] (such as the AWS technical blog

on real-time analytics patterns [10]), as well as practical case studies described in

the blogs of tech companies (Upsolver, Tinybird, etc.) [7; 11]. Significant

attention was given to the Reactive Manifesto [2-3] and related materials, which

define the principles for building high-load responsive systems.

The work was conducted as a systematic review of architectural solutions.

A classification of the main approaches was created, which formed the basis for

the structure of the results.

Results. Before discussing the architectures, it is important to clarify what

is meant by real-time applications in the context of the digital (mainly network

and cloud) environment. Unlike strict real-time systems (such as flight control

systems, where there are strict deadlines in microseconds), most web and business

applications belong to the class of soft real-time systems – they aim to minimize

processing delays to ensure high responsiveness but do not have absolute

deadlines. For example, for a user-facing web service, an interactive response

within ~100 milliseconds is perceived as instantaneous. For a real-time analytics

system, receiving insights in seconds instead of minutes already provides a

business advantage [7]. Therefore, the goal of the architecture is to minimize

latency (time from event/request to response) and ensure high throughput (to

handle the stream of events). The main requirements for real-time application

architectures are:

● Minimizing delays at all stages (input, processing, output). High-

performance communication is used, and long-blocking operations are avoided.

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-4

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-4

● Concurrency and parallelism. Often, many events need to be

processed simultaneously, so the architecture must be scalable and support

parallel processing (multithreading, distribution across nodes).

● Resilience. Real-time services must operate continuously. A failure

of one component should not stop the entire system – failure isolation and quick

recovery are necessary [3].

● Elasticity. The load may increase dramatically (a surge in events),

so the architecture must scale easily (horizontally in the cloud or using reserves).

● Data sequence. In some real-time systems (e.g., financial systems),

it is important to correctly order events. The architecture must either guarantee

ordering or be able to work without strict consistency (which is simpler for

performance but creates logic complexity) [8].

Considering these requirements, several architectural approaches have

emerged in the industry.

Microservices Architecture and its Role in Real-Time

Microservices is an architectural style where an application consists of

numerous small, independent services, each of which performs a well-defined

function, and they interact with each other through clear interfaces (most

commonly network APIs) [4]. This approach became popular thanks to

companies like Netflix and Amazon, who were the first to scale their monolithic

applications into a set of microservices for better manageability. However, in

addition to organizational advantages (division of development across teams),

microservices also provide technical benefits for real-time systems.

They allow hot components to be scaled independently. For instance, if the

service responsible for processing incoming events becomes a bottleneck, it can

be scaled up by running more instances without affecting other parts of the

system. This corresponds to the requirement for elasticity – resources are added

dynamically to meet load [3].

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-4

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-4

Microservices often communicate asynchronously (through message

queues, brokers), which supports resilience and low coupling. Instead of

synchronously calling another module and waiting for a response (which creates

delay and the risk of cascading failures), a service can send a message and

continue working. This message-driven communication is one of the principles

of reactive systems [3]. It improves decoupling of components and allows the

system to remain responsive even when partial issues occur.

In a microservices architecture, it is easier to apply specialized

optimizations for individual services. For example, a service responsible for

caching frequently requested data can operate in memory (in-memory store) for

instant access, while another service can write to a reliable storage. The functional

separation facilitates targeted optimization to meet real-time requirements for

specific parts.

However, microservices also have drawbacks when applied to real-time

systems.

A call from one microservice to another over the network can take

milliseconds, whereas a function call within a monolith takes tens of

nanoseconds. For systems that require ultra-low latency (such as algorithmic

trading), microservices can introduce unacceptable delays due to network calls.

A practical solution is to minimize the number of hops between services along

the critical path. For example, the critical data flow is processed within 1-2

services, rather than being routed through a dozen.

In a distributed microservices environment, performing ACID transactions

across services is challenging. As a result, systems often need to shift to eventual

consistency (where data is eventually synchronized). This is acceptable for many

real-time systems (e.g., in an analytics system, instant consistency is not required,

and it is acceptable if the data is updated after a few seconds). However, for

applications like stock exchanges, more complex mechanisms need to be

implemented.

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-4

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-4

Real-time microservices can generate huge streams of logs and events.

Tracking where the delay occurs is non-trivial. Distributed tracing systems and

queue monitoring need to be implemented, which increases infrastructure

complexity.

Nevertheless, the experience of large companies shows that the benefits of

microservices outweigh the challenges when implemented correctly. For

example, Netflix processes trillions of events per day using hundreds of

microservices – this architecture has proven capable of servicing millions of users

simultaneously with minimal latency (video stream buffering, real-time

recommendations, etc.).

Thus, microservices architecture supports real-time operations through

scalability and component isolation but requires thoughtful interaction design

(such as asynchronous messaging and caching) and significant engineering

support (monitoring) to meet latency requirements. In practice, microservices are

often combined with other approaches – such as event-driven integration through

streaming platforms, which will be discussed further.

Event-Driven Architecture and Stream Processing

Event-driven architecture (EDA) is an architectural pattern in which the

interaction between components is built around message-based events.

Application components generate events (for example, "user clicked a button,"

"sensor sent a new measurement," "transaction completed"), and they respond to

events received from other components, often through an intermediary – an event

bus or message broker. In the context of real-time systems, EDA plays a central

role because it allows information to be processed immediately upon the

occurrence of an event, without waiting for scheduled requests. The main

elements of EDA (see Table 1) are:

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-4

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-4

Table 1

Key Components and Advantages of Event-Driven Architecture (EDA)

Component
/ Advantage

Description

Message
queues /
event
streams

Infrastructure for transferring events from sources to subscribers. Brokers such
as Apache Kafka, RabbitMQ, AWS Kinesis, and Google Pub/Sub are used.
These are optimized for high throughput and minimal latency. Kafka, in
particular, handles millions of messages per second.

Event
processors

Independent services (often microservices) that respond to specific events.
Each processor executes its own logic, such as generating receipts, fraud
detection, updating recommendations, etc. These services work concurrently
with the same data.

Loose
coupling of
components

Components do not interact directly – interaction occurs through events. If an
event processor is unavailable, events are stored in queues, ensuring the
continuity of other parts of the system.

Asynchrony No blocking in the processing flow: when specific event handlers are busy, the
system continues to accept new events.

Horizontal
scalability

As load increases, new handlers subscribed to the same events are added. Load
distribution occurs automatically, and this approach is especially effective
when handling telemetry streams and other large-scale streaming data.

Event
ordering and
retention

Brokers (especially Kafka) store events in logs, allowing for delayed reading.
This enables replaying streams for debugging or reprocessing, such as when
updating algorithms. Logging also helps mitigate temporary load spikes,
preventing data loss.

An example of event-driven architecture is a stock market data streaming

analytics system: incoming stock quotes are published to a Kafka topic, from

which several services read them concurrently – one calculates aggregates (e.g.,

moving averages), another checks trading strategies, and a third sends

notifications about significant changes to clients. All these actions happen almost

simultaneously with each new quote arrival, ensuring an "analyze-as-you-go"

approach.

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-4

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-4

It is worth mentioning the Lambda and Kappa architectures – these are big

data processing patterns (see Figure 1).

Fig. 1. Difference between Kappa and Lambda architectures [1]

The Lambda architecture splits processing into two paths: the batch layer

(long-term batch processing for precise final data) and the speed layer (real-time

stream processing with approximate data). This is an attempt to combine accuracy

with performance. However, this scheme is complex, leading to the emergence

of a simplified version – the Kappa architecture, where only stream processing is

used (everything is treated as a continuous stream of events). In real-time

applications, the Kappa architecture is more commonly used, especially with the

advent of powerful stream analytics engines (e.g., Flink, Spark Structured

Streaming), which can deliver results in a matter of seconds or milliseconds,

previously requiring minute-long batch processing [1].

Limitations of EDA. The primary challenge is the complexity of

development. Data resynchronization, the lack of global transactionality (each

service works with its portion of events), and the complexity of debugging event

sequences can all be problematic. Furthermore, event-driven systems require

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-4

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-4

thoughtful monitoring – it is important to track delays in queues and message

“sticking.” Tools such as Kafka Streams or Flink ease some of these challenges

by providing high-level APIs for event processing (such as counters, time

windows, etc.).

In general, event-driven architectures are the cornerstone of real-time

systems, allowing for a natural description of reactive behavior: "received an

event – processed it immediately, triggered new events," and so on. Many modern

high-load systems are built around this paradigm.

Reactive Systems

The concept of Reactive Systems combines several principles, already

discussed, into a unified development philosophy outlined in the Reactive

Manifesto. According to this manifesto, a reactive system should be Responsive,

Resilient, Elastic, and Message-Driven [2]. Essentially, this is a set of principles

for building distributed real-time systems. The reactive approach emphasizes:

1. Asynchrony and non-blocking I/O. The use of tools like reactive

programming libraries (RxJava, Reactor) enables writing code that does not block

threads while waiting for results, instead using callbacks and completion events.

This increases the number of concurrent operations without increasing the

number of threads. For example, a web server on a reactive stack (Vert.x, Akka)

can handle more requests on a single core than a traditional server with threads

per request.

2. Component isolation and actors. A popular implementation of the

reactive approach is the actor model, as seen in the Akka Toolkit. Actors are

objects that communicate only by sending messages and process them

sequentially, one at a time. This guarantees no concurrent conflicts within the

actor, improving reliability. Actors can be easily distributed across nodes and

support transparent recovery (Supervision strategies). This model greatly

simplifies building fault-tolerant systems: if an actor fails, its parent restarts a new

one without causing a global system crash. Many real-time telecom systems (e.g.,

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-4

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-4

WhatsApp, based on the Erlang/OTP actor model) have proven enormous

scalability (millions of simultaneous connected users) with this architecture.

3. Back-pressure. Reactive systems include mechanisms to prevent

overload: when a consumer cannot process events fast enough, it signals the

source to reduce the rate. This is important to ensure that the system doesn't get

overwhelmed during a flood of events. In a reactive stack (e.g., Reactive Streams

specification in Java), back-pressure is built-in – consumers request a specific

number of elements from the source, no more.

An example of a reactive system is Netflix's request-processing system.

They used RxJava to orchestrate multiple external calls (to recommendation

services, ratings, and databases) while forming the user's homepage. The reactive

code allowed the system to collect data asynchronously with minimal delay, and

if any service was slow, the system didn’t completely block, but could partially

display the interface. Another example is multiplayer online games. In a

multiplayer game, it is essential that player actions are sent to others almost

instantly. A reactive architecture based on actors can implement “rooms” (game

sessions) as actors that receive events from players, update the game state, and

send events to all participants. This approach scales well to hundreds of thousands

of rooms with minimal latency within each one.

Limitations of the Reactive Approach: It is relatively complex for

developers used to sequential programming. Debugging asynchronous code is

harder. Also, a strictly reactive approach (e.g., requiring everything to be done

via messages) is not always justified for simple applications – it can unnecessarily

complicate the system. Therefore, a hybrid approach is often chosen: critical

paths are made reactive, while non-critical components can be implemented more

simply.

In conclusion, reactive architectures are more of a set of principles and best

practices that help build real-time systems that meet the requirements of

reliability and scalability. In practice, their implementation may be based on

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-4

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-4

microservices and events, but with the use of reactive frameworks and tools that

ensure non-blocking operations.

Distributed Processing at the Edge

The classical approach of sending all data to the cloud or a data center can

lead to unacceptable delays, especially when data sources are far away or when

instant reactions are required (e.g., equipment control). Edge computing is an

architectural solution where part of the computation is moved as close as possible

to the data source, to the “edge” of the network. These can be local servers within

the same network as the sensors, or directly smart devices/gateways capable of

performing computations. Edge architecture reduces network latency. For

example, in an industrial facility, machine sensors are connected to a local edge

server, and vibration analysis is performed on it in real-time. Only the results or

significant events are sent to the cloud for long-term storage. If all the data were

sent to the cloud, the transmission + processing delay could be more than what is

acceptable for preventing an accident. In fact, researchers note that for time-

critical IIoT (Industrial Internet of Things) applications, the use of edge

components is a necessary condition; otherwise, even small network delays can

lead to critical situations [6; 9].

Architecturally, edge computing typically works in tandem with the cloud,

forming a multi-tier architecture (see Figure 2):

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-4

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-4

Fig. 2. Edge-to-Cloud Architecture Layers [5]

In Figure 2, the data flows are indicated by arrows: most of the data is

processed at the middle layer (closer to the source), and only a portion is

transmitted to the cloud. This architecture reduces latency and unloads the main

network channels (Image: Psenda38, CC0). Edge architecture is widely used in

5G/6G networks, where the concept of Multi-access Edge Computing (MEC)

involves placing servers directly within the telecommunications operator's

infrastructure, near base stations. This allows, for example, streaming gaming

services to place game servers closer to the player, achieving minimal ping. In

5G deployments, operators are collaborating with cloud companies to provide

edge computing as a service.

Limitations of the Edge Approach: The need to deploy and maintain a large

number of distributed nodes (which is more complex than simply keeping

everything in one data center), potential security issues (since many nodes on the

perimeter need protection), and the fact that edge often has limited computational

resources (you can't infinitely increase algorithm complexity on a small node).

Therefore, the architectural solution typically is as follows: critical parts of the

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-4

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-4

logic (such as pre-filtering, simple ML models for event detection) reside at the

edge, while heavy processing (complex analytics, model training) is done in the

cloud, where there are no resource limitations [6].

Examples of Architectures and Their Effectiveness

To link the discussed solutions with practice, let's consider several

examples of real-time applications and the architectural solutions applied (see

Table 2):

Table 2

Examples of real-time applications and the applied architectural solutions

Example Requirement Solution Architecture /
Technologies

Result

Fraud
monitoring in a
bank

Check each
transaction for
fraud in
milliseconds
before approval

Transaction stream
via Kafka, parallel
fraud checks by
microservices using
different rules

Event-driven
pipeline,
microservices, in-
memory session
store

<50 ms per
transaction,
fault
tolerance

Social network /
news platform

Immediate
delivery of new
posts to millions
of subscribers

Fan-out events via
queue, shard
subscribers across
servers

Pub-sub model,
distributed queues
(e.g., HDFS +
Earlybird), load
balancing

Delivery
delay of
hundreds of
ms at high
volumes

Cryptocurrency
exchange

Process hundreds
of thousands of
requests per
second with
minimal delay

Actor model: one
actor per trading
instrument, order =
message

Actors on a
cluster, pub-sub
via broker (e.g.,
NATS.io), in-
memory
processing

Sequence
and
execution
speed
(within ms)

Source: compiled by the author based on their own research

These examples show that combining multiple approaches is common.

Microservices and actors can be combined with event-driven connectivity; edge

computing can work alongside cloud streaming. A real-time system architect

must combine tools based on the best fit for the specific task's requirements. A

clear illustration of the value of real-time approaches is the "data value vs time"

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-4

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-4

graph (Figure 3). It shows that immediately after generation, data holds the

highest value for business (for example, knowing that a user is currently viewing

a product is highly valuable for showing relevant ads), but over time, its value

exponentially decreases [11]. Real-time architectures allow benefits to be

extracted while the data is "hot." This principle drives investments in the

architectural solutions described.

Fig. 3. Schematic representation of the decline in data value over time [11]

The green curve shows that data is most valuable immediately after it is

generated, and then the value of the information quickly declines. The area on the

left (highlighted in blue) represents the time interval during which real-time

analytics can extract maximum benefit, before the data "cools down." Real-time

architectures are aimed at processing data during this critical early phase.

Conclusion. Architectural decisions are a key factor in the successful

implementation of real-time applications. The conducted review allows for the

following conclusions:

1. Asynchronous distributed architectures dominate in digital real-time

systems. The microservices approach, combined with event-driven

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-4

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-4

communications, has proven effective in ensuring low latency and high

scalability. Such systems can remain responsive even under heavy loads due to

parallel processing and component isolation.

2. Reactive principles (Responsive, Resilient, Elastic, Message-

Driven) provide guidelines for design. In practice, this means: using queues and

non-blocking I/O, implementing fault tolerance mechanisms (replication,

automatic service restart), horizontal scaling based on load, and service

interactions through asynchronous messaging. Implementing these principles

(e.g., the Akka actor model) enables the creation of systems that continue to

function correctly despite node failures and can easily scale to handle increased

event traffic.

3. Edge computing is an important component of real-time solutions

when minimizing network latency or ensuring local autonomy is required.

Offloading part of the computation to the edge of the network (at factories,

devices, or 5G MEC nodes) significantly reduces response time for critical

applications (industrial control, autopilots, etc.). This architectural solution is

recommended when the "physics" of data transmission (light speed, network

hops) becomes a limiting factor.

4. Compromises are inevitable. Distributed real-time systems must

balance data consistency and availability (according to the CAP theorem). A

practical takeaway for developers is to identify in advance where strict

consistency can be sacrificed for performance. For example, caching data on

different nodes may lead to discrepancies of a few milliseconds – is this

acceptable? For most user applications, yes; for financial calculations, probably

not. The architecture should account for these requirements.

Examples have shown the effectiveness of patterns. Thanks to event-driven

architecture, financial systems can detect fraud within tens of milliseconds, while

social networks can spread messages almost instantaneously around the world.

This has resulted in a significant advantage: companies can make decisions and

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-4

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-4

respond "on the freshest data," improving service quality and gaining competitive

advantages (e.g., a more personalized user experience based on current actions,

not yesterday’s).

Practical recommendations: When designing a real-time application, one

should: analyze the nature of the load (constant flow vs. event bursts) and choose

an architecture capable of scaling dynamically (microservices + queue); identify

components that are critical for latency – place them as close to the data source

as possible and implement them with the fastest technologies (e.g., C++ service

on the edge); use ready-made high-performance solutions: distributed streaming

platforms (Kafka, Pulsar) for event exchange, in-memory data grids (Redis,

Hazelcast) for caching hot data, asynchronous web servers for the frontend;

integrate monitoring and back-pressure from the start. Without this, there is a risk

that the system will only perform well up to a certain load threshold and then

enter a degradation mode. A well-designed architecture ensures smooth

degradation (disabling secondary features) instead of a crash.

References

1. Bobulski, Janusz & Kubanek, Mariusz. (2020). Big Data System for

Medical Images Analysis. DOI: 10.20944/preprints202005.0274.v1.

2. Aceto, Luca & Attard, Duncan Paul & Francalanza, Adrian &

Ingólfsdóttir, Anna. (2024). Runtime Instrumentation for Reactive Components

(Extended Version). DOI: 10.48550/arXiv.2406.19904.

3. Amazon Web Services. Reactive Systems on AWS. – 2025. – URL:

https://docs.aws.amazon.com/pdfs/whitepapers/latest/reactive-systems-on-

aws/reactive-systems-on-aws.pdf (accessed: 07.04.2025)

4. Bhattacharjee, S. Microservices architecture and design: A complete

overview. 2024. URL: https://vfunction.com/blog/microservices-architecture-

guide/ (accessed: 07.04.2025).

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-4

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2025-4

5. Bigelow, S. J. What is edge computing? Everything you need to know.

2021. URL: https://www.techtarget.com/searchdatacenter/definition/edge-

computing (accessed: 07.04.2025).

6. El Akhdar, A. et al. Exploring the Potential of Microservices in Internet

of Things: A Systematic Review of Security and Prospects. Sensors. 2024. Vol.

24, no. 20. Article 6771. DOI: 10.3390/s24206771.

7. Franklin, J. Building a Real-Time Architecture: 8 Key Considerations.

URL: https://www.upsolver.com/blog/building-a-real-time-architecture-8-key-

considerations (date of access: 07.04.2025).

8. Garcia, M. Real-Time Data Architecture Patterns. URL:

https://dzone.com/refcardz/real-time-data-architecture-patterns (date of access:

07.04.2025).

9. Kiangala, S., Wang, Z. An Effective Communication Prototype for

Time-Critical IIoT Manufacturing Factories Using Zero-Loss Redundancy

Protocols, Time-Sensitive Networking, and Edge-Computing in an Industry 4.0

Environment. Processes. 2021. Vol. 9, no. 11. Article 2084. DOI:

10.3390/pr9112084.

10. Sodabathina, R., Ly, B., Zuo, H., Radhakrishnan, S. Architectural

patterns for real-time analytics using Amazon Kinesis Data Streams, part 1. 2024.

URL: https://aws.amazon.com/ru/blogs/big-data/architectural-patterns-for-real-

time-analytics-using-amazon-kinesis-data-streams-part-1/ (date of access:

07.04.2025).

11. Tinybird team. Real-time streaming data architectures that scale. 2023.

URL: https://www.tinybird.co/blog-posts/real-time-streaming-data-

architectures-that-scale (accessed: 07.04.2025).

