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JOINT LEARNED-IMAGE COMPRESSION AND SUPER RESOLUTION 

 
Summary. Recent advancements in learning-based image coding have 

demonstrated promising outcomes. These codecs utilize deep neural networks to 

reduce dimensionality at the stage where a linear transform would typically be 

applied. This signal representation, known as latent space, can be interpreted by 

other deep neural networks without decoding, offering benefits for various image 

processing tasks. In this study, we establish baselines by combining learned-

image compression and Super Resolution (SR) for hybrid modeling. Specifically, 

we experiment with two baselines: one leveraging fixed image compression and 

SR models, and the other integrating fixed image compression and adaptively 

learned-SR models. Experimental results indicate that our second approach 

yields better perceptual quality than baseline 1. Moreover, our baseline 2 

achieved a 23.33% improvement in BD-Rate PSNR and 0.44 dB in BD-PSNR 

when evaluated on the DIV2K validation set, and a 20.23% gain in BD-Rate 

PSNR and 0.34 dB in DB-PSNR when evaluated on the JPEGAI test set. 

Furthermore, we explored the impact of training data sets on the performance of 

image compression models to determine the optimal choice of training dataset for 

our hybrid modeling. 

Key words: Learned-image compression, image coding, Super Resolution, 

image enhancement, image resotration. 
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Introduction. Image compression is a fundamental component of signal 

processing and computer vision, serving as a crucial low-level image processing 

task. Its significance extends to various critical applications, including medical 

imaging, satellite imaging, multimedia services, telecommunications, the Internet 

of Things (IoT), and security (Viswanathan & Palanisamy, 2023). Image 

compression reduces the bits needed for storage and transmission. Efficient data 

transfer is crucial in today's Internet. Uncompressed high-resolution images 

consume excessive bandwidth. Therefore, compression optimizes storage and 

transmission, vital for applications like video conferencing and satellite imagery. 

Lossy methods include transform, discrete cosine, vector quantization, fractal, 

singular value decomposition, and wavelet coding. Lossless methods include run-

length, arithmetic, Huffman, and Lempel-Ziv coding (Sandeep et al., 2023) as 

illustrated in Fig. 1.  

 

 
Fig. 1. Image compression techniques 

 
Recent substantial improvements in powerful computation along with 

superior and wide-ranging machine learning (ML) and deep learning-based artificial 
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neural network (ANN) methods (Fig. 2) have allowed image compression to further 

improve in reducing JPEG artifacts, compression perceptual quality, Peak Signal-to-

Noise Ratio (PSNR), and computational complexity (IEEE, 2019). Deep learning 

image compression replaces linear transforms with CNNs, mapping pixels to a 

lower-dimensional latent space. Traditional codecs use linear transforms. (Robinson 

& Kecman, 2003), proposed a grayscale compression method using a joint ML-SVM 

and DCT, improving visual quality over JPEG (Xu, IEEE Beijing Section, & IEEE, 

2018) used supervised regression and PCA for color image compression, minimizing 

prediction error and seed selection complexity. (Khan Gul et al., 2022) proposed 

RNNSC, an RNN-based stereo image compression, leveraging redundancy to reduce 

bit rate. Recurrent units enable adjustable compression without retraining. (Gregor 

et al., 2016), used a variational autoencoder for improved latent variable modeling 

on ImageNet and Omniglot, achieving high-quality ‘conceptual compression’ by 

retaining global information over low-level details.  

 
Fig. 2. Latent representation of the input image is quantized, and utilized for compression 

and reconstruction to obtain the final reconstructed image 

 
(IEEE, 2017) Used a 12-layer CNN to reduce compression artifacts. "DeepN-

JPEG" (Liu	et	al. , 2018)  achieved 3.5x higher compression than JPEG, 
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maintaining quality. (IEEE, 2018)Applied a symmetric CAE with PCA for better 

coding efficiency. (Ballé	et	al. , 2018) Introduced a VAE with a convoluted scale 

hyperprior, improving visual quality over prior methods. 

(Minnen, Ballé, &	Toderici, 2018)  extended (Ballé	et	al. , 2018)  with a 

hierarchical and autoregressive entropy model, outperforming BPG. SISR aims to 

recover HR images from LR ones. CNN approaches, starting with SRCNN 

(Dong	et	al. , 2014) , have significantly improved SR, particularly PSNR 

(Haris, Shakhnarovich, &	Ukita, 2018). However, PSNR-oriented methods often 

over-smooth images (Kim, Lee, &	Lee, 2015). GANs (Ledig	et	al. , 2016) address 

this by enhancing perceptual quality. ESRGAN (Wang	et	al. , 2018), using RDDB 

blocks and relativistic GAN, won the PIRM-SR Challenge (Blau	et	al. , 2018) , 

emphasizing perceptual index. It employs residual scaling, smaller initialization, and 

enhanced perceptual loss for detailed texture recovery. 

Vision Transformers (ViTs) (Chen	et	al. , 2022) excel in Super Resolution 

(SR) via Multi-Head Self-Attention (MHSA), capturing long-range dependencies. 

However, MHSA's quadratic complexity limits inference speed. ALAN addresses 

this with Asymmetric Depth-Wise Convolution Attention (ADWCA), improving 

both SR quality and speed. 

Learning-based image coding's latent space allows direct processing by 

other networks, benefiting SR (Chen, Qin, &	Wen, 2024). This study explores SR 

within the compressed domain, comparing fixed compression/SR networks versus 

an SR network adapted for compressed images. In this investigation, we examine 

various approaches for applying super resolution to the output of a compression 

network. Specifically, we consider two approaches: (1) using a fixed compression 

and Super Resolution networks, and (2) an adapted version of the Super 

Resolution network retrained to operate on images in compressed scenarios. 
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Related work. In this section, we initially discuss learned-image compression, 

followed by a discussion on single image Super Resolution.  

1. Learned-image compression 

Similar to all other lossy compression techniques, machine learning 

methods for lossy image compression operate on a fundamental principle: an 

image, typically modeled as a vector of pixel intensities ( 𝑥 ), undergoes 

quantization, reducing the amount of information required to store or transmit it, 

but also introducing error at the same time. Usually, the pixel intensities are not 

quantized directly. Instead, the quantization takes place in an alternative (latent) 

representation of the image, a vector in some other space (𝑦), yielding a discrete-

valued vector (𝑦Q). Therefore, it can be losslessly compressed using entropy coding 

methods, such as arithmetic coding. 

Learning-based image methods for end-to-end coding have emerged as 

powerful tools in the context of image compression, and are capable in some 

instances of surpassing the performance of traditional approaches (Agustsson et. Al, 

2017).  

2. Single image super resolution 

Super resolution is a category of techniques and methods to upscale raster 

images by a factor of two or more. Single-image super resolution focuses on a 

solitary image, lacking the ability to leverage correlation between subsequent 

frames as seen in multi-view or video super resolution. This technique represents 

an evolutionary step beyond traditional image re-sampling methods such as 

bilinear, bicubic, and Lanczos filtering, with the latter being regarded as the most 

effective among conventional approaches. In recent years, advancements in deep 

learning have enabled super resolution methods to achieve outstanding visual 
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quality for up-scaling factors of four or higher. This subsection will examine a 

variety of learning-based super resolution techniques and also explain the 

architecture of SR network which we adopted for our work. 

Photo-realistic single image super-resolution using a generative adversarial 

network (SRGAN) is a pioneering super-resolution model that applies GANs, 

incorporating deep residual networks that diverge from relying solely on Mean 

Square Error (MSE) as the primary optimization target 

(Minnen, Ballé, &	Toderici, 2018). SRGAN deviates significantly from previous 

super-resolution methods by introducing a novel perceptual loss function based 

on high-level feature maps derived from the VGG network. Prior GANs, first 

introduced by Goodfellow in 2014, typically accept random noise as input to the 

generator. Conversely, SRGAN's generator accepts a lower-resolution image as 

input, while the discriminator operates conventionally. The primary distinction 

lies in the loss function, which minimizes the Euclidean distance between feature 

representations of reconstructed and original images obtained from the pre-

trained VGG19 network. This approach yields generated images that are more 

faithful to a natural manifold rather than pixel-wise comparisons. Enhanced deep 

residual networks for single image super-resolution (EDSR) Agustsson et. Al, 

2017 is a state-of-the-art super resolution residual model, securing first and 

second place at the NTIRE 2017 competition. It builds upon SRResNet with an 

improved architecture designed for faster computation and superior performance 

outcomes.  

Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN) 

(Chen, Qin, &	Wen, 2024), illustrated in Fig. 3(a), acknowledged a limitation in 

the SRGAN architecture, namely the propensity to produce unrealistic visual 

artifacts, often referred to as hallucinations. To elevate visual quality, the authors 

refined the network architecture, adversarial loss, and perceptual loss. A novel 
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Residual-in-Residual Dense Block which is composed of three residual dense 

blocks with residual scaling parameter (𝛽), envisioned in Fig. 3(b) and 3(c), 

without batch normalization serves as the fundamental building block for the 

network. Therefore, in our joint compression and super-resolution framework, we 

utilize the ESRGAN as the decoder component. 
 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 3. Architecture of (a) enhanced super-resolution generative adversarial network 

(ESRGAN), (b) residual-in-residual dense block, and (c) residual dense block. 

Methods 

1. Utilizing fixed encoder and decoder 

Lossy compression, while efficient, degrades image quality, impacting tasks 

like super-resolution. This study uses a fixed encoder-decoder for two-stage 
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processing: lossy compression of the LR image, followed by 4x super-resolution 

upscaling for reconstruction. Fig. 4 illustrates this approach. 

 
Fig. 4. Framework of baseline 1 utilizing with deep learning-based pretrained learned-

image compression and super-resolution models 

 
We utilize a priorly trained bmshj2018-hyperprior model to compress the 

downsampled LR image and then upscale and enhance it using a pre-trained 

ESRGAN. To evaluate our model's performance, we compare its output with the 

corresponding original image using a range of objective metrics, including Peak 

Signal-to-Noise Ratio (PSNR) and Multi-Scale Structural Similarity Index 

Measure (MS-SSIM). This fixed encoder-decoder architecture serves as our 

baseline 1 for joint compression and super-resolution task.  

2. Utilizing fixed encoder and learned decoder 

This workflow combines a pre-trained bmshj2018-hyperprior compression 

model with an adaptively learned SR model. The downsampled image is lossy 

compressed. The compression network's output (excluding entropy coding) is input 

to the SR network. Training follows ESRGAN, but the LR image is passed through 

the compression network (no entropy coding) for each compression quality. Initial 
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compression step is the same as in our baseline 1, but the only difference is that 𝑥Q is 

then fed into the ESRGAN as input data together with its original high-resolution 

counterpart to train the underlying SR model to produce the final reconstructed 

image (𝑥Q!"). We refer to this combination of fixed compression and learned-SR 

approach as our baseline 2. 

 
Fig. 5. Framework of baseline 2 utilizing pretrained learned-image compression and 

learned super-resolution models 

3. Loss function 

The discriminator in ESRGAN is the relativistic discriminator denoted as 

(𝐷"#), which estimates the likelihood that a real image 𝑥$ appears significantly 

more natural compared to a fake image 𝑥% as mentioned in equation 2 and 3. 𝐷"# 

is formulated as in equation (1), where 𝐸&![∙]  is the operation of aggregating 
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average values from all fake data within the mini-batch. 𝜎 is the sigmoid function 

and 𝐶(𝑥) is the non-transformed discriminator output.  

𝐷"#Z𝑥$ , 𝑥%[ = 	𝜎 ]𝐶(𝑥$) − 𝐸&!_𝐶Z𝑥%[`a,     (1) 

𝐷"#Z𝑥$ , 𝑥%[ = 	𝜎Z𝐶(𝑥$) − 𝐸_𝐶Z𝑥%[`[ → 1,     (2) 

𝐷"#Z𝑥%, 𝑥$[ = 	𝜎Z𝐶Z𝑥%[ − 𝐸[𝐶(𝑥$)][ → 0,     (3) 

Equation 4 and 5 define the discriminator loss and generator loss, 

respectively, where 𝑥% = 𝐺(𝑥')  and 𝑥'  refers to the input LR image and 

adversarial loss for generator contains both 𝑥$ and 𝑥% . 

𝐿("# = −𝐸&" elog ]𝐷"#Z𝑥$ , 𝑥%[af −	𝐸&! elog ]1 − 𝐷"#Z𝑥%, 𝑥$[af,  (4) 

𝐿)"# = −𝐸&" elog ]𝐷"#Z𝑥$ , 𝑥%[af −	𝐸&! elog ]𝐷"#Z𝑥$ , 𝑥%[af,  (5) 

 A new perceptual loss function, 𝐿*+$,+* is introduced to the generator loss, 

that constrains features before activation rather than after. This approach addresses 

two limitations of the original design: sparse activation and inconsistent 

reconstructed brightness. The total loss for the generator is the sum of 𝐿*+$,+* , 

content loss (𝐿-), and regularization term, equation (6). 

𝐿) = 𝐿*+$,+* + 𝜆𝐿)"# + 𝜂𝐿-,       (6) 

Where 𝐿- =	𝐸&#‖𝐺(𝑥') − 𝑦‖-, is the content loss that measures the 1-norm 

distance between the recovered image 𝐺(𝑥') and the ground-truth 𝑦, while 𝜆 and 

𝜂  serve as coefficients to regulate the relative importance of distinct loss 

components. 

Experiments. To compare the compression and image enhancement 

performance of our proposed methods, we conducted a number of experiments using 

PyTorch framework. 
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1. Experimental tools 

Anaconda Navigator simplifies experimental setups, especially for Python 3.8 

and package management. It provides a user-friendly interface for consistent 

environment creation, package installation, and dependency management using 

conda. Environments isolate projects, crucial for multi-faceted research. Anaconda 

Navigator also facilitates access to libraries like TensorFlow, PyTorch, Pandas, and 

NumPy. Python's versatility, libraries, and community make it essential for deep 

learning (DL) and computer vision (CV). Its simplicity enables rapid prototyping, 

and libraries support complex tasks like image recognition and NLP. Python is 

pivotal for AI advancements. PyTorch was crucial for our low-level CV research. 

Its dynamic neural network library offered flexibility and efficiency. The 

torch.autograd module automated gradient computation, streamlining training. 

Network building blocks (nn.Conv2d, nn.ReLU, nn.MaxPool2d) enabled modular 

model construction. The dynamic computation graph allowed agile model design, 

and GPU acceleration sped up computations. PyTorch empowered us to explore 

innovative methodologies in computer vision. 

2. Training Details 

For this experiment, we employ two types of datasets: JPEGAI 

(https://jpegai.github.io/3-datasets/) and DF2K, which we use to train the decoder 

part in our baseline 2. IJPEGAI is used to train the encoder component of our 

baselines. bmshj2018-hyperprior models are trained for compression qualities 1-8 

using varying λ. 16 encoders are trained with MSE distortion, 32 minibatch size, 

Adam optimizer, and 1e-4 learning rate. High-resolution training uses 256x256 

patches, low-resolution uses 96x96. Trained encoders are evaluated on DIV2K, 

JPEGAI, and Kodak. Baseline 1 uses a pre-trained ESRGAN decoder. Baseline 2 
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trains ESRGAN with DF2K using pre-trained encoders. Baselines are evaluated on 

DIV2K and JPEGAI.  

3. Experimental results 

This section analyzes our joint compression and super-resolution results. 

Baseline 2 (pretrained compression encoder, ESRGAN-trained decoder) 

outperformed baseline 1 (pretrained compression/SR models) in bpp, PSNR, and 

MS-SSIM. We explore optimal trade-offs and discuss results, including benefits, 

limitations, objective/subjective evaluations, and applications. This analysis details 

the benchmarking results of the baseline models through objective and subjective 

comparisons of joint compression and super-resolution.  

3.1 Objective evaluation of baselines 

Fig.s 6 (a) and (b) display RD curves representing the average PSNR and MS-

SSIM metrics for 100 images from the DIV2K validation dataset compressed at 

various bitrates. The solid lines represent baselines trained on high-resolution image 

datasets, specifically JPEGAI, while dashed lines indicate those utilizing an encoder 

trained on low-resolution images. Results on DIV2K show adaptive learning 

decoder (joint compression/SR) outperforms pre-trained models. High-resolution 

JPEGAI encoder yields best performance; low-resolution encoder (baseline 1) 

performs worst. Low-resolution trained models require higher bitrates for similar 

performance.  
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Fig. 6. Evaluation of baseline 1 and 2 on DIV2K validation set 

 
Table 1 

Average difference in bitrate, PSNR, and MS-SSIM between RD curves of 

baselines evaluated on the DIV2K validation set. The first and second row 

measures the BD-Rate PSNR (%), BD-PSNR [dB], BD-Rate MS-SSIM (%), 

and BD-MS-SSIM between the two baselines whose encoders are trained with 

JPEGAI HR and LR training set, respectively. 

Encoder 
Training Set 

BD-Rate  
PSNR (%) BD-PSNR [dB] BD-Rate  

MS-SSIM (%) BD-MS-SSIM 

JPEGAI HR -23.33% 0.442434177 -12.98% -0.12975399 

JPEGAI LR -23.48% 0.461000192 -14.04% -0.140433824 

 

Table 1 compares bitrates, PSNR, and MS-SSIM for two baselines on DIV2K, 

using high- and low-resolution trained encoders. Baseline 2, with a high-resolution 

JPEGAI-trained encoder, significantly outperformed baseline 1. It showed a 23.33% 

BD-PSNR improvement (0.44 dB PSNR increase) and a 12.98% BD-Rate MS-

SSIM improvement (0.129 MS-SSIM increase). With a low-resolution encoder, 

(a) (b) 
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baseline 2 also excelled, achieving a 23.48% BD-PSNR improvement (0.46 dB 

PSNR increase) and a 14.04% BD-Rate MS-SSIM improvement (0.14 MS-SSIM 

increase). 

On the JPEGAI test set, RD curves (Fig. 7 a, b) show similar performance 

trends. The dynamic learning decoder approach (baseline 2) outperformed pre-

trained models (baseline 1). Baseline 2, with a high-definition JPEGAI-trained 

encoder, performed best. Baseline 1, with a low-resolution JPEGAI-trained encoder, 

performed worst. 

 
 

Fig. 7. Evaluation of baseline 1 and 2 on JPEGAI test set 

 

 

 

 

 

 

 

 

 

 

(a) (b) 
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Table 2 

Average difference in bitrate, PSNR, and MS-SSIM between RD curves of 

baselines evaluated on the JPEGAI test set. The first and second row 

measures the BD-Rate PSNR (%), BD-PSNR [dB], BD-Rate MS-SSIM (%), 

and BD-MS-SSIM between the two baselines whose encoders are trained with 

JPEGAI HR and LR training sets, respectively 

Encoder 
Training Set 

BD-Rate  
PSNR (%) BD-PSNR [dB] BD-Rate 

MSSSIM (%) BD-MSSSIM 

JPEGAI HR -20.23% 0.34144768 -11.24% -0.112440499 

JPEGAI LR -20.89% 0.369938883 -13.47% -0.134702901 

 

Table 2 compares bitrates, PSNR, and MS-SSIM for two baselines on the 

JPEGAI test set, using high- and low-resolution trained encoders. Baseline 2, with a 

high-resolution JPEGAI-trained encoder, outperformed baseline 1. It showed a 

20.33% BD-PSNR improvement (0.34 dB PSNR increase) and an 11.24% BD-Rate 

MS-SSIM improvement (0.112 MS-SSIM increase). With a low-resolution encoder, 

baseline 2 also excelled, achieving a 20.89% BD-PSNR improvement (0.37 dB 

PSNR increase) and a 13.47% BD-Rate MS-SSIM improvement (0.13 MS-SSIM 

increase). 

3.2 Subjective evaluation of baselines 

This section presents visual comparisons between two baselines that jointly 

compress and super-resolve images from both DIV2K and JPEGAI datasets across 

various bitrates. The visualizations begin with the original ground truth image, 

followed by a cropped portion of this image in the first column. Subsequent columns 

display the jointly compressed and super-resolved results at different compression 

qualities: 1, 4, and 8.  
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In the following Fig.s, we present visualizations of the performance of 

baselines 1 (B1) and 2 (B2), each equipped with either HR JPEGAI-trained encoders 

(denoted as HR B1 and HR B2) or low-resolution counterparts (denoted as LR B1 

and LR B2). The labels "x4" indicate a 4-fold upsampling using a selected SR model, 

while "Q" represents the compression quality. For example, HR B1 x4 @ Q1 refers 

to the reconstructed image of baseline 1 whose encoder is trained with JPEGAI HR 

images, compressed at a compression quality of 1, and then upscaled by a factor of 

4. The Fig.s illustrate the performance of baselines 1 and 2 by showcasing the best 

and second-best PSNR and MS-SSIM values for each reconstructed image at the 

same compression quality in red and blue colors, respectively, to facilitate visual 

comparison between the two baselines.  

Fig. 8 presents a qualitative comparison of baselines equipped with encoders 

trained on high-resolution JPEGAI images, applied to the "0801.png" image from 

the DIV2K dataset. The results reveal that baseline 2 consistently outperformed 

baseline 1 in terms of PSNR across all compression quality levels (Q1, Q4, and Q8). 

Meanwhile, baseline 1 achieved higher MS-SSIM values than baseline 2 at 

compression qualities 4 and 8. This pattern is similarly observed for LR B1 and B2 

with the difference that LR B1 outperforms LR B2 in both PSNR and MS-SSIM at 

Q-value 8, Fig. 8. In Fig. 9 and 10, we can see HR and LR B2 gave higher PSNR 

and MS-SSIM, except for LR B2 at quality 8. In Fig. 16 to 19, it is observed the 

significant performance of B2 over B1 when evaluated on JPEGAI test set. 

We get clearer reconstructed images as the compression quality (Q) gets larger 

as we can see in Fig. 8 - 10. However, we can observe visually unpleasant artifacts 

in the output images when using the joint compression and super-resolution method 

with fixed encoder and decoder. On the other hand, when employing the method 

which combines frozen encoder and learned-decoder returns visually more pleasant 

reconstruction with less noises. The results indicates that when we evaluate the 
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baselines on DIV2K and JPEGAI images, the baseline which has learned-SR model 

is able to generate more perceptually pleasing images with fewer artifacts. 

 

 
Fig. 8. Perceptual quality comparison (best and second best) between baselines utilizing the 

encoder trained with JPEGAI high-resolution images (DIV2K validation set image 

0801.png) 

 

 
Fig. 9. Perceptual quality comparison (best and second best) between baselines utilizing the 

encoder trained with JPEGAI low-resolution images (DIV2K validation set image 

0801.png) 
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Fig. 10. Perceptual quality comparison (best and second best) between baselines utilizing 

the encoder trained with JPEGAI high-resolution images (DIV2K Validation Set Image 

0881.png) 

 
Discussion. Previous results showed our baselines performed SR in the 

compression domain, but improvements are needed. Baseline 1 used pre-trained 

encoders/decoders; baseline 2 used a pre-trained encoder and learned decoder. 

Future work involves developing an end-to-end trainable network, requiring optimal 

dataset selection and a method to directly map latent representations for SR 

upsampling. This section examines DF2K dataset training impact on encoder 

performance via RD curves on DIV2K, JPEGAI, and Kodak. 

Conclusion. This study explored two hybrid models for deep learning image 

compression and super-resolution: pre-trained models and a fixed encoder with 

learned SR. Evaluations on DIV2K and JPEGAI showed the learned SR approach 

outperformed the pre-trained model, both subjectively and objectively. Pre-trained 

model reconstructions exhibited compression artifacts. Training dataset impact on 

compression was also investigated. Future work will focus on end-to-end trainable 

joint compression and super-resolution methods. 
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