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INFLUENCE OF ACOUSTIC PRESSURE WAVE ON FLAT GYRO
SUSPENSION ELEMENTS
BILIUB AKYCTHUYHOI XBUJII TUCKY HA ILJIOCKI EJJEMEHTH
HIABICY I'TPOCKOIIY

Summary. The nature of the interaction of sound with an obstacle is
revealed. The dynamic characteristics of the plate under an acoustic pressure
wave are investigated. A thin isotropic plate was chosen as a mechanical model
for the interaction of sound with a flat barrier. The questions of the influence of
mechanical impedance for the symmetric and antisymmetric components of
sound pressure are considered. Numerical analysis of bending vibrations of the
shadow side of the plate is carried out. The value of the lengths of the
modulating waves of the main bending vibrations is established
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Anomauia. Posxkpusacmuvcs npupooa 63aemMooii 38YKY i3 NepeuiKooolo.
Hocnioacytomsbes Ounamiuni xapakmepucmuku niaCmuHUu 3a aKyCmu4Hoi Xeuui
mucky. Ak mexaniuna moodens 83aemMo0ii 38Ky 3 NIOCKOI NepeuKooor0 0opana
MmonKa 13o0mponna naacmuHa. Pozenanymo numauna 6naugy MexaHiuHo2o
iMnedancy O0ns CUMEmPUYHOI Ma AaHMUCUMEMPUUHOI CKAAO0BUX 38)KOBO2O
mucky. Ilposedeno uucenvnuii ananiz 32uHAIbHUX KOAUBAHL MIHLOBOI CIMOPOHU
nracmunu. Bcmanoeneno 3nauenms 008dCUH MOOYIIOIOUUX X8UTb OCHOGHUX
32UHANILHUX KOAUBAHD.

Kniouosi cnoea: axycmuuna Xeuns mucky, NaAcKi eiemeHmu niogicy

ZZPOCKOFZCI, MOHKA i30mp0nHa naacmuHa.

Introduction. Starting to study the nature of the elastic interaction of
penetrating acoustic radiation with a flat barrier, first of all, attention should be
focused on the choice of a mechanical model of the phenomenon. Studies by a
number of authors prove that, in many cases important for practice, in the
frequency range below the boundary, the conditions for fixing the plate do not
have a decisive effect on its dynamics, and, without distorting the objectivity of
the sound transmission pattern, it is permissible to neglect the boundary
conditions along the attachment contour , and the computational model can be
represented as a plate unlimited in length [1; 2; 3]. It is preferable to consider the
distribution of parameters on the boundary surface and at infinity (for an
unbounded region) as well as at the origin of coordinates (for a region of limited
parameters) as the main boundary conditions.

Such a simplification is permissible, for example, when the plate is hinged
with other structural elements, that is, for the case when the bending energy
from the oscillating plate is practically not transferred to the contacting
elements. These considerations can also be extended to the case when the
cylindrical rigidities of the connecting elements are much higher than the

bending rigidity of the plate, and it can be stated with full confidence that the
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radiation energy is almost completely absorbed by the oscillating plate due to
internal friction in the material. In other words, it is assumed that along the
contour the plate is hinged to ribs that are absolutely rigid in bending in the
direction normal to the plate and, at the same time, have low bending rigidity in
planes tangential to the middle surface. Thus, in what follows, we will deal with
thin plates of infinite length with large internal absorption.

As for the boundary conditions on the surface of the plates, they consist in
the equality of the normal to the plane velocities of the plate and the medium, as
well as the pressure. It is obvious that these conditions follow from the
requirement of continuous change in pressure and particle velocities at the
boundary of two media and are based on the physical impossibility of a pressure
jump in infinitely close layers, on the one hand, and a velocity jump, on the
other. The latter implies the exclusion of the possibility of the appearance of a
displacement jump and, consequently, a discontinuity at the boundary of two
media [4].

Based on the foregoing, we take as initial the low rigidity of the plate in
the direction of its normal, the hinged fastening along its contour, as well as the
absolute rigidity of the plate in bending in the direction of the normal to the
surface. If, in addition, we assume that the thickness is 4-6 times greater than the
wavelength, then for the analytical description it is legitimate to use the
equations of a thin plate.

When compiling a mathematical model of sound transmission, we
proceed from the following assumptions - the linear elements of the plate,
perpendicular to its middle surface, remain straight during deformation and are
set normally to the curved middle surface; no elongation or shear deformation
occurs in the median surface; plate bending deformations remain small, elastic
and subject to Hooke's law.

Let us focus on a plane monochromatic pressure wave, i.e. a wave with a

flat front, the pressure and velocity of particles of the medium in which do not
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have a gradient along the front line. In addition, the speed of the particles of the
medium in a plane wave will be considered proportional to the pressure at the
same time. In practice, a plane wave is considered as an idealization of a wave
emitted by a body of finite size, but located at a sufficiently large distance.

The issues of sound transmission through two plates that are not
interconnected were considered by A. London [5], and a more general theory of
the effect of sound on composite structures is described, for example, in
monographs [6, 7].

If the noted works studied the issue of the interaction of sound with an
obstacle in terms of determining its soundproofing properties, then the main
aspect of the research is the dynamic characteristics of the plate under acoustic
exposure.

Thin isotropic plate. Let us illustrate the solution of the formulated
problem using the mechanical model of the interaction of sound with a flat
barrier widely used in acoustics (Fig. 1) [8]. Let us assume that an isotropic
elastic plate of constant stiffness and unlimited length separates two acoustic
half-spaces with the same characteristics, for example, air.

Let, at some point in time, a plane monochromatic sound pressure wave

be incident & on the front surface of the plate at an angle
Pl:Ploexpi{a)t—ko[(z+5)cos0+ysin6’}}, (1)
where k, = @ is the wave number; @- circular frequency of oscillations; ¢ - 1s
c

the speed of sound in air; P, - is the pressure amplitude in the sound wave.

The term o at the coordinate z is introduced for the convenience of
further calculations. It does not affect the desired amplitude values of pressure.

For the reflected and transmitted waves we have similarly:
P, =P, expi{a)t —ky|—(z+5)cosO + ysin@]};

2
P3:Pwexpi{a)t—ko[(z—5)0050+ysin¢9]}. @
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The movement of the plate occurs only in the plane y,z and does not

depend on the coordinate , because along it the pressure on the surface is

constant. Thus, there is a flat deformation of the plate.

/7

Fig. 1. Scheme of the passage of a sound wave through a plane isotropic plate of infinite

length

For this case, the mathematical model of the bending motion in the Lame

form can be represented by the equations [4] —

2
(i+ﬂﬁg+ﬂVWEu%az;
oy ot
o0& o'W ®
A+ )=+ uV’W =p, ,
(A+p)Z+u P
2 2
where & = v + a—W; V= —+ 6_2; V-u W — offsets in the direction of the
oy Oz oy~ 0Oz

axes y and z; p, — plate material density (mass per unit volume); A and u —

elastic constants Lame, which are expressed in terms of Young's modulus £ and
Poisson's ratio ¢ in the following way

Eo _ _E
(Iro)(1-20) " 2(1+o) @

To solve the system of equations (3), we accept that
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V_ago oy, W:8_¢+8_V’ (5)

oy & o oz
After substituting relations (5) into equations (3), the latter decompose

into two independent equations for the functions ¢ and v :

2

2
vzgpzcl—zﬁ ¢. v2W:C2—26_'7” (6)

2

1

where C, = [ Pl (A+2 ,u)]E — P-wave speed; C, = [ up, ' ]; — shear wave speed.
The solution of equations (6) 1s sought in the form:
o(y.z.t)= f,(z)expi(wt —k,ysinb);
w(y.z.t)= f,(z)expi(wt —k,ysinf).

Substituting the values ¢ and y into equations (3), after integration, we
find their values, then using expressions (5) we determine the functions V' and
W

V= —[(C1 expayz + C, exp(—ayz) )ik, sin0 + a, (Cyexpa,z - C, exp(—azz))} X

xexpi(a)t - koysiné?);
W= [al (C1 expa,z —C, exp(—alz)) - (C3 expa,z—C, exp(—ozzz)ik0 sin 9)] X
xexpi(wt —k,ysin@).
To establish the values of normal and shear stresses, we use the relations [9]:
ow oV

ZZ:(Z+2ILI)E+AE:

:[al(Clexpalz+Czexp(—alz))—az(Qexpazz—C4exp(—azz))}x
xexpi(wt —k,ysinf);
[GV 6Wj @
Z,=u S+ |-
oz Oy
:—[a3(Clexpalz—Czexp(—alz))+a4(C3expa22+C4exp(—azz))]x
xexpi (ot —k,ysin),

where: a, =a; (A+24)— Ak, sin® 0, a, = 2ipa,k,sin8, a, =2iuak,sin6,
a, :,u(azz +k; siné’).
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From expressions (1), (2), we determine the sound pressure on the front

and shadow sides of the plate:
(P,+R)

P

3

= (P, + Py )expi(wt —k,ysin6);

s =Poexpi(at —kysin0).

Let us represent the values of these pressures as the sum of the symmetric

and antisymmetric components (Picture 2, Picture 3) —
1 :
P = E(PIO + P + B, )expi( ot —k,ysin);

P :%(P10 + P, — P,y )expi( ot —k,ysin0)

and establish the degree of influence of each of them on the nature of the

bending vibrations of the plate.

Fig. 2. The action of the symmetrical component of sound pressure

Under the action of the symmetrical component of the sound pressure, the

boundary conditions have the form (Picture 4):

—P:

c? y

zlz=25

z=%0

Fig. 3. The buildup of the plate of the antisymmetric component of the sound pressure
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Using relations (8), we find arbitrary constants of integration C,

expressions (7). Substituting their values into the formula for lateral
displacement W, we obtain the law of bending vibrations of the plate under the

action of the symmetrical component of sound pressure

1

W, _,.,=FPk, {a)zélpcl [47(7 —~ 1); cthk, (y —1)2 -

N RE )
—(27/—1)2(7—512)2cthk2(7/—d2)2} },

1

where 7 =(C,¢'sin6) ; k, =C;'w5; d*=(C,C;") =(1-20)[2(1-0)] .

B

ﬁ/y—
o
E K

e L e

Fig. 4. Passage of a sound wave through an elastic isotropic layer

N

If the antisymmetric component of the excess pressure of the sound

frequency acts on the plate, then the boundary conditions take the form:

Z| ., =-Pi 2| =P 7,

Zlz=%¢5

5:0; Zy

=0,

z=— z=0

and the displacement value is described by the relation —

-1

/4

a

1
1 i
s =l {6025& {4y(7 1)z thiey (y —1)2 —(20 —1) (7 —d*) 2 th(y - arz)}2

(10)
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1

1 -
When restrictions are met |k,(y—1)2(<0,9 wu kz(y—dz)z <0,9,

implying the preservation of only the first two terms of the expansion into a

series of tangents, expressions (9), (10) take the form:

P k22(7—d2) __P51_0-2 (Cnc_lsiné?)z—(1—20)(1—0‘)_2.

. =7F =+1, ' ’
T o ()1 (C.c”sin0) -1
(11)
P 1
W)y =25 : (12)
» pc3y(y_1)k§52(1—d2)—1

where C, :[E pj(l—az)_l}z — velocity of longitudinal waves in the plate.

Formula (11) coincides with the law of bending vibrations of a plate at
symmetrical pressure, established by JI. 1. JIammessim [10].

If y>>1, then the entire first term in the denominator becomes small

compared to unity, and formula (12) takes the form:

P 1 2P 1
”:a)zé'pc 4 sV (1—a? lza)zmn D& . , ’ (13)
5(2 7/)(— )— mC4s1n 0-1

n

which is the well-known law of bending vibrations of a thin plate. Here

3
ng E52
31-0

— cylindrical bending stiffness of the plate; m, =25p, — mass per

unit area of the plate. Consequently, the oscillations of the plate on which it falls
at an angle 6 plane sound wave, can be described by the equations of motion of
thin plates, if the length of the incident wave trace at ¥ >>1 or the length of the
transverse wave at ¥ <<1 and is less than 3.5...6 layer thicknesses.

Let us further take into account the effect of internal friction in the plate
material. In the simplest case, this is achieved by introducing the complex

Young's modulus [1; 6; 7; 8], i.e. the hysteresis loop is represented by an ellipse

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2022-6




International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2022-6

E°=E(1+in) (here E — real part of the modulus of elasticity; 7 — loss factor).

By internal friction, we mean the totality of various physical processes in the
material that, during deformation, lead to irreversible dissipation of mechanical
energy.

In view of the above, the value of the mechanical impedance (the ratio of
pressure to the displacement velocity of the plate surface) for the symmetric and

antisymmetric components of the sound pressure will be determined by the

relations:
z, = 8%/ =—i,oca)5(2£l)+i2£2)); z,= 81/;/ =ipcw5(z§1)+izfl2)), (14)
8tc Gta
where
2 =[ar(1-a) 1] (=) s
20 =n 4y (1-a*)(y-2d°)+ & | (y - a*) (15)
2 =§(1—d2)k§y2 -1; 2 =§nc(1—d2)k§y2.

Comparison of the dynamic and static moduli of elasticity, for example,
steel [11], showed that its dynamic rigidity does not differ from the static one.
This does not apply to soft materials, where the change in dynamic parameters
should be taken into account [2].

Thus, using expressions (11), (12), it is possible to establish the law of
motion of any layer of the plate. The inconvenience of the obtained formulas is
that the plate displacement is a function of the symmetric and antisymmetric

pressure components, and not the pressure amplitude of the incident wave P,,. It

is easy to get rid of this shortcoming using the concept of the sound transmission

coefficient 4 (ratio of pressure amplitudes in the past P,, and falling P, waves)

. . P . .
and sound reflection coefficient B=-2. According to the calculation model of
20

sound transmission, the total displacement velocity of the plate surfaces under
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the action of both symmetric and antisymmetric pressure components will be

equal to their sum on the front and their difference on the shadow side of the

plates, i.e.
ow iP 1 iP 1
ar e +—2 ; 16
ot |._s awop, 2+ wdp, 2V +iz? (1
ow| i, 1 P 1 (7
ot .5 wop, 2" +iz"  wop, 2V +iz?)

From the condition of continuity at the boundary of two media follows the
conclusion about the equality of the oscillatory velocity of the plate and the
normal component of the velocity of the sound wave. Then the boundary
conditions on the surface of the plate can be written as —

W _E-B . W _R_ 4 (18)

ot |._s 20 ot |5 2z
: : : : : : P
where z, = p,c — specific acoustic resistance of air; p, — air density; V =— —
Zy
the known relationship between vibrational speed V' and pressure P for a plane
wave in air [3].

Eliminating from equations (16) ... (18) pressure P and speed Ga_VtV, find

the transmission coefficients 4 and reflections B sound —

A= < : ; (19
2) L0 0,0 EORD S0, 0 (19)
T+ = || T+ = | === | 14+ = | =+ | 1+ |
c AC AC AC AC AC AC
S0, @0 (00 ()0
1+ aAzc _ A2c +1 aA2c aAz

h £(2) £(2) L) . 2,0 2 0 ’
1+—=< 1+“—02“—11+c a4+ 1+ |-
AC C AC AC AC AC AC

-1

where A_ =z, (wdp, cosb)
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Taking into account the found values of the coefficients 4 and B, the law

of bending vibrations of the plate can be finally written in the form —

1
5(P10+P20_P30) 1 ;
_— : . expi(wt —k,ysin8)+
@ m, -sin* 0 -1
mc

1( ) (C”sin@jz— I=20
—(P,+P,+P, —o)
2" ° E20 - 5(1-07) - (-0) expi( ot —k,ysin6) =

2
(C”sin 9) -1
C

=P expi(wt —k,ysin@)[ (1+ B— A)p, + (1+ B+ A) p, | =

P, . | .
= fexpl (@t —k,ysin® — @) pu expig, + p, i, expip, |, 1)

EORY OV (L0 L@
where p = A" +1+A“ AC +1+AC ;

N | —

AS)
[
TN
p—
+
AR
5Fs
N
[\S)
+
VR
D> [N
o =
~
(3]
o | —
S
Il
7\
[E—
+
AR
>s
N~
(3]
_+_
7\
D> [N
) =
.
[\e)
[\8)

=arctg| — @, =arctg| — ;
2 8 A ?, g A

S A2) 20 -2 S(1),(1) e -(2) -
p=arctg| | 1+ - [+ | 1+ == 1= 1+ = ;
A, A, A, A, A; A, A,
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Having carried out a numerical analysis of the bending vibrations of the

shadow side of the plate, setting for concreteness — 6=1-10"m; 7=0,1;

E =71Hwm (Aluminium alloy D1 (0); o = 0,31, then, the oscillations generated

in the plate can be considered in terms of the amplitude and length of the
bending wave [12] (Picture 5).

If on the y-axis we plot the value of the wavelength 4 bending vibrations
generated on the shadow side of the plate, and along the abscissa axis - the value
@ circular frequency, then the graph, for example, at an angle
0 =0,985 pax (56,25 degree) will take the form of a continuous curve of
complex configuration, but symmetrical about the y-axis (Picture 5, curve 1) and
having characteristic “bursts”. In between, at frequencies @ =200c¢ ' and
w=25-10" ¢, the wavelength will decrease monotonically. It is obvious that
the average power of the process is distributed unevenly over the frequencies @
incident sound wave ranging from zero to 40-10° ¢”'. So, at frequencies ,
equal 8,4-10°c™, 16,6-10° ¢, 33,4-10° ¢ the spectrum shows a
superposition of two modes of vibrations of different amplitudes and lengths
(curves 2). The dotted line in fig. 5 shows the modulating wave lengths of the
main bending vibrations. This phenomenon is observed at frequencies @,, equal
12,6-10° ¢, 37,6-10° ¢ and corresponds to the passage of resonant regions

[13; 14].
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Fig. 5. Change in flexural wave length
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With increasing angle € As the sound wave falls, the spectrum of flexural
vibrations becomes more saturated, and their shape becomes more complex. The
diagram, as it were, "shrinks" along the frequency axis. At frequency
@=0,4-10° ¢ the oscillation phase changes to 7 pao [15; 16].

Conclusions. Thus, numerical analysis suggests that, other things being
equal, in a diffuse field, the amplitude of the bending wave with increasing

frequency w also decreases exponentially.
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