International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2022-5

TexHi4HI HAyKH
UDC 004.021
Mychka Sviatoslav
Student of the
Kharkiv National University of Radio Electronics
Muuka CesTociaaB OJieropuy
cmyoeHm
Xapxiscvbko2o HayioHanbHO20 YHIGepcumemy paoioenekmpouiKu
Mbpbruka CesarociaaB Osieropu4
cmyoeHm

XapbKOBCKOZO HAYUOHAIbHOZO YHUsepcumema paduoaﬂekmpouuku

Supervisor:

Holian Nataliia

Associate Professor of the department of Software Engineering
Kharkiv National University of Radio Electronics

AN ALGORITHM FOR FINDING THE WEIGHTED COST OF LIVING
IN RENTED HOUSING IN THE SOFTWARE SYSTEM FOR
AUTOMATING THE CALCULATIONS OF RENTED HOUSING
LIVING COST
AJIT'OPUTM 3HAXOJKEHHSA 3BAKEHOI BAPTOCTI
MPOXXUBAHHS B OPEHIOBAHOMY KUTJII B IPOT'PAMHIN
CUCTEMI JIJIsI ABTOMATHU3ALII NIJIPAXYHKY BAPTOCTI
OPEHIOBAHOI'O)KUTJIA
AJTIOPUTM HAXOXJIEHUSA B3BEHIEHHO CTOUMOCTHU
MPOXXUBAHUA B APEHJIOBAHHOM KWJIBE B IPOTPAMMHON
CUCTEME JJ151 ABTOMATU3ALIUU IOJJCUETA CTOUMOCTH
APEHJIOBAHHOI'O KNJIbA

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2022-5

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2022-5

Summary. Theoretical issues related to the development of an algorithm
for finding the cost of living in rented housing, depending on specific
characteristics.

Key words: algorithm, weighted average, calculation, cost, housing, rent.

Anomauia. Jlocniodceno meopemuyni HUMAHHA ~WOOO PO3POOKU
aneopummy Ojisi 3HAX0OHCEHHS. BAPMOCHI NPOHCUBAHHS 8 OPEHOOBAHOMY HCUMILI,
3ANeAHCHO BIO0 KOHKPEMHUX XaAPAKMepUCmuK.

Knrwouoei cnosa: ancopumm, 38adxicene cepedHe, NiOpaxyHoK, 8apmicmeo,

JHCUMITIO, OPEHOA.

Aunomayua. Hccneoosanvt meopemudeckue 60NpOCbl paspabomxu
aneopumma Ol HAXOHCOEHUs CMOUMOCHMU NPOACUBAHUA 8 aAPEeHOOBAHHOM
JHCUTIbE, 8 3ABUCUMOCIU 0N KOHKDEMHbIX XAPAKMEPUCMUK.

Knrwouesvie cnosa: ancopumm, 638euleHHOe cpeoHee, NOOCUEm,

cmoumocms, JHCUujive, apeHOa.

Rented housing prices are growing nowadays. Therefore, there is a need for
a solution that will take control over the rapidly rising prices, offering transparent
criteria that will indicate whether one rented housing should be more expensive
to live in than the other one. Those criteria may be district of the city where the
housing is located, distance from public transport stops or even the floor.

The best solution for this problem is to create a software that will
automatize the calculations needed for fair prices distribution. The system will
offer a website where housing owners will have an ability to advertise the houses
for rent and find suiting prices.

The system to be developed is relevant because it is designed to solve the
stated problem. With its help, housing prices will be formed using previous
suggestions by such weighting criteria as the city area, proximity to public

transport and the floor. The system will set a range of acceptable prices for

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2022-5

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2022-5

accommodation this way, without allowing tenants to pay too much for housing
and without allowing the owners to set unreasonably low prices.

The essence of the algorithm is to apply certain weights to the arithmetic
mean of the cost of living in a house that meets a certain criterion and the
formation of the resulting value. The algorithm has 4 steps and is developed using
C# programming language [1], and the figures depict syntax of this language, too.

After receiving a POST request via HTTP [2], on the first 2 steps separate
prices are formed according to criteria. There is an example of code that performs
these operations shown on figure 1. This code performs a search operation on the
same floor and finds the arithmetic mean of their prices. If no such suggestions

are found, some default value is set.

var floorSuggestions = _context.Suggestions.Where(s => s.Floor == request.Floor);
var floorPrice = !await floorSuggestions.AnyAsync()

? _coefficients.Value.DefaultPrice
await floorSuggestions.AverageAsync(s => s.MonthPrice);
floorPrice *= _coefficients.Value.Floor;

Fig. 1. Formation of separate criteria prices

Similar methods are used to search for proposals by district, only the
coefficients and models change.

After finding the weighted prices by floor and area, the algorithm needs to
find the weighted coefficients for each of the elements of the dictionary that
contains proximity to public transport, which comes in the request from the client
part. This 1s performed for each part of the dictionary. Figure 2 shows calculating
currentMapPrice, which contains raw price on each iteration.

var currentMapQuery = _context.MinsFromPublicTransportMaps
.Where(map => map.PublicTransportType == item.PublicTransportType
&& map.Mins == item.Mins)

.Include(m => m.Suggestion);

decimal currentMapPrice = await currentMapQuery.AnyAsync()
? await currentMapQuery.AverageAsync(m => m.Suggestion.MonthPrice)
: _coefficients.Value.DefaultPrice;

Fig. 2. Calculating raw average prices for every public transport type

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2022-5

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2022-5

Every value that has been calculated by the algorithm on this step needs to
be multiplied by the weight coefficient of its type (fig. 3). Then these values are
added to a general variable that stores overall price for housing that have the same

proximity to public transport.

switch (item.PublicTransportType)
{

case PublicTransportType.Subway:
currentMapPrice *= _coefficients .MinsFromSubway ;
break;

case PublicTransportType.Bus:
currentMapPrice *= _coefficients.Value.MinsFromBus;
break;

case PublicTransportType.Trolleybus:
currentMapPrice *= _coefficients .MinsFromTrolleybus;
break;

case PublicTransportType.Tram:
currentMapPrice *= _coefficients.Value.MinsFromTram;
break;

}

mptPrice += currentMapPrice;

Fig. 3. Calculating overall price for the 3rd step

On the 4" step the algorithm multiplies the overall price for the 3 step by
an overall proximity to public transport weight coefficient and calculates the
resulting price (fig. 4).

mptPrice *= _coefficients.Value.MinsFromPublicTransport;

return new CheckSuggestionPriceResponseDto()

{

CalculatedPrice = floorPrice + districtPrice + mptPrice

};

Fig. 4. Calculating overall price

Therefore, the algorithm calculations may be represented using formulas:

— Z?:l pxl

px 9

n

result = Y, p, * Cy,
where:
- px— the price for x criterion, like floor, district etc,
- n— count of suggestions with the same x value, for example, located on

the same floor or in the same district,

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2022-5

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2022-5

- pxi — the price of i suggestion from n found,
- cx — weight coefficient for x™ criterion, for example, for floor, district,
public transport proximity etc.
The algorithm was designed to be the main part of the system for
automating the calculations of rented housing living cost. This is used for

approximating and allowing to set fair prices.

Literature
1. C# 8.0 and .NET Core 3.0 — Modern Cross-Platform Development: Build
applications with C#, .NET Core, Entity Framework Core, ASP.NET Core,
and ML.NET using Visual Studio Code, 4th Edition // Packt Publishing,
2019. 818 p.
2. Adam Freeman. Pro ASP.NET Core 3 // Publisher: Apress, 2020. 1109 p.

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2022-5

