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1. ANNOTATION 

Nowadays, computational tasks are everywhere and amount of data rises 

every year, so using parallel programming become more and more important. In 

cases like neural networks computation, which can be easily divided into separate 

processes, due to all operations are matrixes and we can perform functions 

simultaneously, regardless of the order. Particularly at the moment, when GPUs have 

become much more accessible than a number of years ago, using GPUs significantly 

ameliorate computational time. In this article we are considering C++ OpenMP [1] 

library, which supports multi-platform shared-memory parallel programming in 

C/C++ and Fortran, also defines a portable, scalable model with a simple and flexible 

interface for developing parallel applications on platforms from the desktop to the 

supercomputer, in compare to Python multiprocessing module.  
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We picked a Pi evaluating problem as a computational task, because Pi is one 

of the most important world constants, which evaluation does matter.  

As a result of the article, we stated that using C++ and “pragma omp” directive 

is better than Python and it’s multiprocessing module due to a Python internal 

processes. We propose you to follow our path and try this code on your own. 

Each line of the following code is written on our own and is accessible on 

GitHub [2] to fully restore our results and dive a bit dipper into this topic on your 

own. 

2. SETTINGS AND INSTALLATION 

Firstly, you need to install python [3] on you computer. We will be using 

Jupyter Notebook [4], an environment for interactive development and 

presentation of Data Science projects, will be used as the Python development 

environment. In order to be able to work with Jupyter Notebook, you need to 

install the Anaconda [5] software distribution. 

To do this, open a browser and follow the link https://www.anaconda.com/ 

(fig. 1). 

 
Fig. 1. Anaconda’s website 
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Select the menu item "Products" -> "Individual Edition" and turn the page 

down to see all possible variants of distributions (fig. 2). 

 
Fig. 2. Anaconda’s installers 

 
Select the desired operating system and download the installer file. As an 

example, download "64-bit graphics installer for Windows". Then install 

Anaconda on your computer. 

To open the Jupyter Notebook, use the command line. To do this, open it 

and write "jupyter lab". There will be 2 links at the bottom of the command line 

(fig. 3). 

 
Fig. 3. Command line output 

 
Copy one of the links, open a browser and follow the previously copied 

link. Click on the icon labeled "Python3" in the "Notebook" section. 

From now we have the opportunity to write code in cells and start it. In 

order to execute the code, we must use the key combination "Ctrl + Enter". 
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3. RESEARCH OF PARALLEL PROGRAMS 
3.1 Computing π using C ++ and OpenMP 

Since ancient times, the number Pi was the oldest among mathematical 

constants. It is found in many mathematics / physics / chemistry formulas that 

describe fundamental interactions. The well-known formula for the length of a 

circle is 𝑙 = 2𝜋𝑟, from which in ancient times philosophers and scientists 

calculated the numerical value of this quantity. Nowadays, there are many precise 

methods of calculation through the Taylor series, the integrating sum or methods 

such as the Monte Carlo method. In this paper we will consider the formula for 

calculating numbers through the integral sum. It is a known fact that !
"
=

𝑎𝑟𝑐𝑡𝑔(1) = ∫ #
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𝑑𝑥#
&  (1), following π and we will calculate the integral sum by 

a close method of the rectangle, dividing the interval from 0 to 1 on the n part, in 

each segment we calculate the value of function, multiply by #
'
 and sum the 

obtained values. As a result, we obtain the following formula: 
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When n increases to infinity, the limit of the partial sum will be equal to 

our integral (1). 

The following are examples of using the Python programming language for 

parallel computing compared to concurrency methods in S ++. 

All tests will be performed on macOS Big Sur 11.6 and Intel Core i5 2.3 

GHz (7360U) processor, with two independent processor cores on one silicon 

chip. Fully compatible program code with Windows 10. For parallel programs, 2 

threads will be used due to the presence of 2 cores. 

Let's create a single-thread function for calculating the numbers π by the 

method described above: 
 

double IntegralPi(int n) { 
double h = 1.0 / n; 
double pi = 0; 
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double x = h; 
for (int i = 0; i < n; i++) { 
pi += 4 / (1 + x * x); 
x += h; 
} 
return pi * h; 

} 
 

Functions have now been created to calculate the functions described above 

in parallel. To do this, we will create a directive "pragma omp parallel for 

reduction" [6], which was created precisely to parallelize the cycles of our species. 

Corresponding function code for parallel calculation: 
 

double IntegralPiOMP(int n) { 
    double h = 1.0 / n; 
    double pi = 0; 
     
    #pragma omp parallel for reduction (+:pi) 
    for (int i = 0; i < n; i++) { 
        pi += 4 / (1 + h * (i + 1) * h * (i + 1)); 
    } 
    return pi * h; 
} 

 
Let's create a function to calculate the time spent using the library "chrono" 

and its functions. For more stable results, we will calculate the minimum 

execution time of the function from a given (count) number of cases. Code of time 

measurement functions for both options: 
 

double measureCalculationTime(int n, int quantity = 3) { 
    chrono::high_resolution_clock::time_point start, 

finish; 
    double time_spent = __DBL_MAX__; 
    for (size_t i = 0; i < quantity; ++i) { 
        start = chrono::high_resolution_clock::now(); 
        cout << "Pi value:" << fixed << setprecision(15) 

<< IntegralPi(n) << "\n"; 
        finish = chrono::high_resolution_clock::now(); 
        time_spent = min(time_spent, 
                         

chrono::duration_cast<chrono::duration<double>>(finish - 
start).count()); 

    } 
    return time_spent; 
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} 
 
double measureParallelCalculationTime(int n, int quantity 

= 3) { 
    chrono::high_resolution_clock::time_point start, 

finish; 
    double time_spent = __DBL_MAX__; 
    for (size_t i = 0; i < quantity; ++i) { 
        start = chrono::high_resolution_clock::now(); 
        cout << "PI value:" << fixed << setprecision(10) 

<< IntegralPiOMP(n) << "\n"; 
        finish = chrono::high_resolution_clock::now(); 
        time_spent = min(time_spent, 
                         

chrono::duration_cast<chrono::duration<double>>(finish - 
start).count()); 

    } 
    return time_spent; 
} 

 
Together with the time of the calculation, we will display the calculated 

value of the number π to see how accurately it is calculated depending on the 

value of n. Let me remind you that π = 3.14159265358979. So, let's run our 

program and look at the results. First, let's look at the results for one thread (fig. 

4). 
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Fig. 4. Single thread C++ output 

 
As we can see, the accuracy of the number π increases with increasing n as 

well as the time spent, all as we could have guessed. 

Now let's look at the result of the function using parallel calculations (fig. 

5). 
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Fig. 5. Multi thread C++ output 

 
Compared to using a single thread, we have significantly reduced 

execution time, let's calculate how much (fig. 6). 
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Fig. 6. Speed increasing using OpenMP 

 
As we can see, at small values of n (10), due to the overhead of switching 

and managing threads, the execution time is longer, but increasing the value of n 

we get a gain of about 1.8 times (not 2), because part of the time the processor 

performs system or other user tasks. 

3.2 Calculating the number 𝝅 using Python and multiprocessing library 

We will calculate the number 𝜋 according to the formulas described in 

paragraph 3.1. Create a file "lib.py" and implement functions similar to those 

described in the previous paragraph. Create a function [7] to calculate the value 

of 𝜋: 
 

def integral_pi(n): 
    h = 1.0 / n 
    pi = 0 
    x = h 
    for i in range(n): 
        pi += 4 / (1 + x*x) 
        x += h 
    return pi * h 

 
Let's create a function for calculating the number π using the 

multiprocessing [8] module: 
 

def integral_pi_parallel(n): 
    with Pool(processes=THREAD_COUNT) as pool: 
        pi = pool.map(integral_pi, [n]) 
    return pi 
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We will also create a function for measuring time spent [9], similar to C++ 

implementation: 
 
def measure_time_spent(func, count=3): 
    time_spent = float('inf') 
    for _ in range(count): 
        start = time() 
        print(func()) 
        finish = time() 
        time_spent = min(time_spent, finish - start) 
    return time_spent 
 

Let's now look at the results of the program. First, as in C ++, let's see how 

the functions were performed in one thread (fig. 7). 
 

 
Fig. 7. Single thread Python output 
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As we can see, the results regarding the accuracy of calculating the number 

π have not changed, but the execution time has changed, which has become many 

times longer. Now let's look at the results of parallel execution functions (fig. 8). 

 
Fig. 8. Multi thread Python output 

 
At first glance, working hours have hardly changed, let's see if it really is 

(Fig. 9). 

 



International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18 

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18 

 
Fig. 9. Speed increasing using multiprocessing 

 
As we can see, the operating time is less than functions with one process 

only at very large values of n. All this is due to the fact that two processes were 

created, which shared the data, the load, and Python did not use the full computing 

potential of the system due to not very complex calculations in the function. 

It's time to compare all the results, so let's do it in the form of a table (tabl. 

1). 

Table 1 

Results comparing 
n\language Python/1Threads  Python/2Threads C++/1Thread C++/2Threads 

10 0.000024795 0.249196767 0.000005186 0.000005524 
10! 0.000243902 0.252921819 0.000009023 0.000007926 
10" 0.015168905 0.258495092 0.000425813 0.000280239 
10# 0.139436721 0.390665054 0.003703568 0.002688796 
10$ 1.432634830 1.635576009 0.030684762 0.016352494 

5 ∗ 10$ 6.925243854 7.148224115 0.159383584 0.090907507 
10% 13.793296813 14.035954236 0.308462249 0.173262422 

5 ∗ 10% 74.039576053 68.838588953 1.544327589 0.861942223 
 

As we can see, the fastest option is to implement in C ++ using OpenMP. 
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Conclusions. In the course of this work, parallel work on Python and C ++ 

was considered. As an example, programs for calculating the number π were 

optimized. In a comparison with the C ++ programming language and the 

OpenMP directive, it was determined that the Python programming language is 

much slower even with the use of the multiprocessing library. This is because the 

Python programming language is a dynamically typed and interpreted 

programming language. 

Python is very easy to learn, has intuitive syntax, but is much slower than 

C ++, especially with the OpenMP module.  

In the future, we are going to dive a bit dipper in the multiprocessing 

module with numpy [10] objects. It is supposed to be way faster in compare to 

just multiprocessing module.  

Full code is accessible via link in the references.  
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