
International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

Computer Science

UDC 004.02

Fliahin Vladyslav

Student of the

Kharkiv National University of Radioelectronics

Oliynyk Olena

Senior Lecturer of the Software Engineering Department

Kharkiv National University of Radioelectronics

COMPARISON OF COMPUTATIONAL COMPLEXITY OF PROGRAMS

USING PARALLEL PROGRAMMING IN PYTHON AND C++

Summary. Comparing OpenMP using pragma omp directives with

multiprocessing library.

Key words: parallel programming, OpenMP, multiprocessing.

1. ANNOTATION

Nowadays, computational tasks are everywhere and amount of data rises

every year, so using parallel programming become more and more important. In

cases like neural networks computation, which can be easily divided into separate

processes, due to all operations are matrixes and we can perform functions

simultaneously, regardless of the order. Particularly at the moment, when GPUs have

become much more accessible than a number of years ago, using GPUs significantly

ameliorate computational time. In this article we are considering C++ OpenMP [1]

library, which supports multi-platform shared-memory parallel programming in

C/C++ and Fortran, also defines a portable, scalable model with a simple and flexible

interface for developing parallel applications on platforms from the desktop to the

supercomputer, in compare to Python multiprocessing module.

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

We picked a Pi evaluating problem as a computational task, because Pi is one

of the most important world constants, which evaluation does matter.

As a result of the article, we stated that using C++ and “pragma omp” directive

is better than Python and it’s multiprocessing module due to a Python internal

processes. We propose you to follow our path and try this code on your own.

Each line of the following code is written on our own and is accessible on

GitHub [2] to fully restore our results and dive a bit dipper into this topic on your

own.

2. SETTINGS AND INSTALLATION

Firstly, you need to install python [3] on you computer. We will be using

Jupyter Notebook [4], an environment for interactive development and

presentation of Data Science projects, will be used as the Python development

environment. In order to be able to work with Jupyter Notebook, you need to

install the Anaconda [5] software distribution.

To do this, open a browser and follow the link https://www.anaconda.com/

(fig. 1).

Fig. 1. Anaconda’s website

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

Select the menu item "Products" -> "Individual Edition" and turn the page

down to see all possible variants of distributions (fig. 2).

Fig. 2. Anaconda’s installers

Select the desired operating system and download the installer file. As an

example, download "64-bit graphics installer for Windows". Then install

Anaconda on your computer.

To open the Jupyter Notebook, use the command line. To do this, open it

and write "jupyter lab". There will be 2 links at the bottom of the command line

(fig. 3).

Fig. 3. Command line output

Copy one of the links, open a browser and follow the previously copied

link. Click on the icon labeled "Python3" in the "Notebook" section.

From now we have the opportunity to write code in cells and start it. In

order to execute the code, we must use the key combination "Ctrl + Enter".

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

3. RESEARCH OF PARALLEL PROGRAMS
3.1 Computing π using C ++ and OpenMP

Since ancient times, the number Pi was the oldest among mathematical

constants. It is found in many mathematics / physics / chemistry formulas that

describe fundamental interactions. The well-known formula for the length of a

circle is 𝑙 = 2𝜋𝑟, from which in ancient times philosophers and scientists

calculated the numerical value of this quantity. Nowadays, there are many precise

methods of calculation through the Taylor series, the integrating sum or methods

such as the Monte Carlo method. In this paper we will consider the formula for

calculating numbers through the integral sum. It is a known fact that !
"
=

𝑎𝑟𝑐𝑡𝑔(1) = ∫ #
#$%!

𝑑𝑥#
& (1), following π and we will calculate the integral sum by

a close method of the rectangle, dividing the interval from 0 to 1 on the n part, in

each segment we calculate the value of function, multiply by #
'
 and sum the

obtained values. As a result, we obtain the following formula:

∑ #
#$%!

∗ #
'

'
%(# (2)

When n increases to infinity, the limit of the partial sum will be equal to

our integral (1).

The following are examples of using the Python programming language for

parallel computing compared to concurrency methods in S ++.

All tests will be performed on macOS Big Sur 11.6 and Intel Core i5 2.3

GHz (7360U) processor, with two independent processor cores on one silicon

chip. Fully compatible program code with Windows 10. For parallel programs, 2

threads will be used due to the presence of 2 cores.

Let's create a single-thread function for calculating the numbers π by the

method described above:

double IntegralPi(int n) {
double h = 1.0 / n;
double pi = 0;

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

double x = h;
for (int i = 0; i < n; i++) {
pi += 4 / (1 + x * x);
x += h;
}
return pi * h;

}

Functions have now been created to calculate the functions described above

in parallel. To do this, we will create a directive "pragma omp parallel for

reduction" [6], which was created precisely to parallelize the cycles of our species.

Corresponding function code for parallel calculation:

double IntegralPiOMP(int n) {
 double h = 1.0 / n;
 double pi = 0;

 #pragma omp parallel for reduction (+:pi)
 for (int i = 0; i < n; i++) {
 pi += 4 / (1 + h * (i + 1) * h * (i + 1));
 }
 return pi * h;
}

Let's create a function to calculate the time spent using the library "chrono"

and its functions. For more stable results, we will calculate the minimum

execution time of the function from a given (count) number of cases. Code of time

measurement functions for both options:

double measureCalculationTime(int n, int quantity = 3) {
 chrono::high_resolution_clock::time_point start,

finish;
 double time_spent = __DBL_MAX__;
 for (size_t i = 0; i < quantity; ++i) {
 start = chrono::high_resolution_clock::now();
 cout << "Pi value:" << fixed << setprecision(15)

<< IntegralPi(n) << "\n";
 finish = chrono::high_resolution_clock::now();
 time_spent = min(time_spent,

chrono::duration_cast<chrono::duration<double>>(finish -
start).count());

 }
 return time_spent;

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

}

double measureParallelCalculationTime(int n, int quantity

= 3) {
 chrono::high_resolution_clock::time_point start,

finish;
 double time_spent = __DBL_MAX__;
 for (size_t i = 0; i < quantity; ++i) {
 start = chrono::high_resolution_clock::now();
 cout << "PI value:" << fixed << setprecision(10)

<< IntegralPiOMP(n) << "\n";
 finish = chrono::high_resolution_clock::now();
 time_spent = min(time_spent,

chrono::duration_cast<chrono::duration<double>>(finish -
start).count());

 }
 return time_spent;
}

Together with the time of the calculation, we will display the calculated

value of the number π to see how accurately it is calculated depending on the

value of n. Let me remind you that π = 3.14159265358979. So, let's run our

program and look at the results. First, let's look at the results for one thread (fig.

4).

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

Fig. 4. Single thread C++ output

As we can see, the accuracy of the number π increases with increasing n as

well as the time spent, all as we could have guessed.

Now let's look at the result of the function using parallel calculations (fig.

5).

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

Fig. 5. Multi thread C++ output

Compared to using a single thread, we have significantly reduced

execution time, let's calculate how much (fig. 6).

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

Fig. 6. Speed increasing using OpenMP

As we can see, at small values of n (10), due to the overhead of switching

and managing threads, the execution time is longer, but increasing the value of n

we get a gain of about 1.8 times (not 2), because part of the time the processor

performs system or other user tasks.

3.2 Calculating the number 𝝅 using Python and multiprocessing library

We will calculate the number 𝜋 according to the formulas described in

paragraph 3.1. Create a file "lib.py" and implement functions similar to those

described in the previous paragraph. Create a function [7] to calculate the value

of 𝜋:

def integral_pi(n):
 h = 1.0 / n
 pi = 0
 x = h
 for i in range(n):
 pi += 4 / (1 + x*x)
 x += h
 return pi * h

Let's create a function for calculating the number π using the

multiprocessing [8] module:

def integral_pi_parallel(n):
 with Pool(processes=THREAD_COUNT) as pool:
 pi = pool.map(integral_pi, [n])
 return pi

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

We will also create a function for measuring time spent [9], similar to C++

implementation:

def measure_time_spent(func, count=3):
 time_spent = float('inf')
 for _ in range(count):
 start = time()
 print(func())
 finish = time()
 time_spent = min(time_spent, finish - start)
 return time_spent

Let's now look at the results of the program. First, as in C ++, let's see how

the functions were performed in one thread (fig. 7).

Fig. 7. Single thread Python output

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

As we can see, the results regarding the accuracy of calculating the number

π have not changed, but the execution time has changed, which has become many

times longer. Now let's look at the results of parallel execution functions (fig. 8).

Fig. 8. Multi thread Python output

At first glance, working hours have hardly changed, let's see if it really is

(Fig. 9).

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

Fig. 9. Speed increasing using multiprocessing

As we can see, the operating time is less than functions with one process

only at very large values of n. All this is due to the fact that two processes were

created, which shared the data, the load, and Python did not use the full computing

potential of the system due to not very complex calculations in the function.

It's time to compare all the results, so let's do it in the form of a table (tabl.

1).

Table 1

Results comparing
n\language Python/1Threads Python/2Threads C++/1Thread C++/2Threads

10 0.000024795 0.249196767 0.000005186 0.000005524
10! 0.000243902 0.252921819 0.000009023 0.000007926
10" 0.015168905 0.258495092 0.000425813 0.000280239
10# 0.139436721 0.390665054 0.003703568 0.002688796
10$ 1.432634830 1.635576009 0.030684762 0.016352494

5 ∗ 10$ 6.925243854 7.148224115 0.159383584 0.090907507
10% 13.793296813 14.035954236 0.308462249 0.173262422

5 ∗ 10% 74.039576053 68.838588953 1.544327589 0.861942223

As we can see, the fastest option is to implement in C ++ using OpenMP.

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

Conclusions. In the course of this work, parallel work on Python and C ++

was considered. As an example, programs for calculating the number π were

optimized. In a comparison with the C ++ programming language and the

OpenMP directive, it was determined that the Python programming language is

much slower even with the use of the multiprocessing library. This is because the

Python programming language is a dynamically typed and interpreted

programming language.

Python is very easy to learn, has intuitive syntax, but is much slower than

C ++, especially with the OpenMP module.

In the future, we are going to dive a bit dipper in the multiprocessing

module with numpy [10] objects. It is supposed to be way faster in compare to

just multiprocessing module.

Full code is accessible via link in the references.

References

1. URL: https://www.openmp.org

2. URL: https://github.com/Vlad-Fliahin/ParallelProgramming

3. URL: https://www.python.org

4. URL: https://jupyter.org

5. URL: https://www.anaconda.com/products/individual

6. URL: https://docs.microsoft.com/en-

us/cpp/parallel/openmp/reference/openmp-library-reference?view=msvc-170

7. URL: https://jupyterlab.readthedocs.io/en/stable/

8. URL: https://docs.python.org/3/library/multiprocessing.html

9. URL: https://www.w3schools.com/python/python_sets.asp

10. URL: https://numpy.org/doc/stable/index.html

