International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

Computer Science

UDC 004.02
Fliahin Vladyslav
Student of the

Kharkiv National University of Radioelectronics

Oliynyk Olena
Senior Lecturer of the Software Engineering Department

Kharkiv National University of Radioelectronics

COMPARISON OF COMPUTATIONAL COMPLEXITY OF PROGRAMS
USING PARALLEL PROGRAMMING IN PYTHON AND C++

Summary. Comparing OpenMP using pragma omp directives with
multiprocessing library.

Key words: parallel programming, OpenMP, multiprocessing.

1. ANNOTATION

Nowadays, computational tasks are everywhere and amount of data rises
every year, so using parallel programming become more and more important. In
cases like neural networks computation, which can be easily divided into separate
processes, due to all operations are matrixes and we can perform functions
simultaneously, regardless of the order. Particularly at the moment, when GPUs have
become much more accessible than a number of years ago, using GPUs significantly
ameliorate computational time. In this article we are considering C++ OpenMP [1]
library, which supports multi-platform shared-memory parallel programming in
C/C++ and Fortran, also defines a portable, scalable model with a simple and flexible
interface for developing parallel applications on platforms from the desktop to the

supercomputer, in compare to Python multiprocessing module.

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

We picked a Pi evaluating problem as a computational task, because Pi is one
of the most important world constants, which evaluation does matter.

As aresult of the article, we stated that using C++ and “pragma omp” directive
is better than Python and it’s multiprocessing module due to a Python internal
processes. We propose you to follow our path and try this code on your own.

Each line of the following code is written on our own and is accessible on
GitHub [2] to fully restore our results and dive a bit dipper into this topic on your
OWn.

2. SETTINGS AND INSTALLATION

Firstly, you need to install python [3] on you computer. We will be using
Jupyter Notebook [4], an environment for interactive development and
presentation of Data Science projects, will be used as the Python development
environment. In order to be able to work with Jupyter Notebook, you need to
install the Anaconda [5] software distribution.

To do this, open a browser and follow the link https://www.anaconda.com/

(fig. 1).

J ANACONDA. Products Pricing Solutions Resources Partners Blog Company

Data science technology for
a competitive edge.

A movement that brings together millions of data science practitioners,

data-driven enterprises, and the open source community.

This website uses cookies to ensure you get the best experience on our website.

Fig. 1. Anaconda’s website

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

Select the menu item "Products" -> "Individual Edition" and turn the page

down to see all possible variants of distributions (fig. 2).

Windows &8 MacOS & Linux &

64-Bit Graphical Installer (510 MB) 64-Bit Graphical Installer (515 MB) 64-Bit (x86) Installer (581 MB)

32-Bit Graphical Installer (404 MB) 64-Bit Command Line Installer (508 MB) 64-Bit (Power8 and Power9) Installer (255
MB)
64-Bit (AWS Graviton2 / ARM64) Installer
(488 M)
64-bit (Linux on IBM Z & LinuxONE) Installer
(242 M)

ADDITIONAL INSTALLERS
This website uses cookies to ensure you get the best experience on our website.

Fig. 2. Anaconda’s installers

Select the desired operating system and download the installer file. As an
example, download "64-bit graphics installer for Windows". Then install
Anaconda on your computer.

To open the Jupyter Notebook, use the command line. To do this, open it
and write "jupyter lab". There will be 2 links at the bottom of the command line

(fig. 3).

Or copy and paste one of these URLs:

http://localhost: 8888/ ?token=dbb4a3badd924d61f5657916e2df92de381a8b934d90fab8
or http://127.0.0.1:8888/?token=dbb4a3badd924d61f5657916e2df92de381a8b934d90fab8

Fig. 3. Command line output

Copy one of the links, open a browser and follow the previously copied
link. Click on the icon labeled "Python3" in the "Notebook" section.
From now we have the opportunity to write code in cells and start it. In

order to execute the code, we must use the key combination "Ctrl + Enter".

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

3. RESEARCH OF PARALLEL PROGRAMS
3.1 Computing & using C ++ and OpenMP

Since ancient times, the number Pi was the oldest among mathematical
constants. It is found in many mathematics / physics / chemistry formulas that
describe fundamental interactions. The well-known formula for the length of a
circle is | = 2nr, from which in ancient times philosophers and scientists
calculated the numerical value of this quantity. Nowadays, there are many precise
methods of calculation through the Taylor series, the integrating sum or methods
such as the Monte Carlo method. In this paper we will consider the formula for
calculating numbers through the integral sum. It is a known fact that %=

1
1+x

arctg(1) = fol

a close method of the rectangle, dividing the interval from 0 to 1 on the n part, in

~dx (1), following m and we will calculate the integral sum by

each segment we calculate the value of function, multiply by % and sum the
obtained values. As a result, we obtain the following formula:
11
Z;Cl:l 52 * ; (2)

1+
When n increases to infinity, the limit of the partial sum will be equal to

our integral (1).

The following are examples of using the Python programming language for
parallel computing compared to concurrency methods in S ++.

All tests will be performed on macOS Big Sur 11.6 and Intel Core 15 2.3
GHz (7360U) processor, with two independent processor cores on one silicon
chip. Fully compatible program code with Windows 10. For parallel programs, 2
threads will be used due to the presence of 2 cores.

Let's create a single-thread function for calculating the numbers © by the
method described above:

double IntegralPi (int n) ({

double h = 1.0 / n;
double pi = 0;

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

for (int 1i
pi += 4 / (
x += h;

}

return pi * h;

double x = h;
= 0; 1 < n; i++) {
1 + x * x);

Functions have now been created to calculate the functions described above
in parallel. To do this, we will create a directive "pragma omp parallel for
reduction" [6], which was created precisely to parallelize the cycles of our species.
Corresponding function code for parallel calculation:

double IntegralPiOMP (int n) {

double h = 1.0 / n;
double pi = 0;

#pragma omp parallel for reduction (+:pi)
for (int i = 0; 1 < n; i++) {

pi 4= 4 / (1 +h * (L +1) *h * (1L + 1));
}

return pi * h;

Let's create a function to calculate the time spent using the library "chrono"
and its functions. For more stable results, we will calculate the minimum
execution time of the function from a given (count) number of cases. Code of time
measurement functions for both options:

double measureCalculationTime (int n, int gquantity = 3) {
chrono::high resolution clock::time point start,

finish;
double time spent = DBL MAX ;
for (size t i = 0; 1 < quantity; ++1i) {
start = chrono::high resolution clock::now();
cout << "Pi value:" << fixed << setprecision(15)
<< IntegralPi (n) << "\n";
finish = chrono::high resolution clock::now();
time spent = min(time spent,

chrono::duration cast<chrono::duration<double>>(finish -
start) .count ());

}

return time spent;

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

}
double measureParallelCalculationTime (int n, int quantity

chrono::high resolution clock::time point start,

finish;
double time spent = DBL MAX ;
for (size t i = 0; 1 < quantity; ++1i) {
start = chrono::high resolution clock::now();

cout << "PI value:" << fixed << setprecision(10)
<< IntegralPiOMP (n) << "\n";

finish = chrono::high resolution clock::now();

time spent = min(time spent,

chrono::duration cast<chrono::duration<double>>(finish -
start) .count ());

}

return time spent;

Together with the time of the calculation, we will display the calculated
value of the number © to see how accurately it is calculated depending on the
value of n. Let me remind you that © = 3.14159265358979. So, let's run our
program and look at the results. First, let's look at the results for one thread (fig.

4).

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

1Thread
i value:3.039925988907159
i value:3.039925988907159
i value:3.039925988907159
10, time spent: 0.000005186000000
i value:3.140592486923123
i value:3.140592486923123
i value:3.140592486923123
1000, time spent: 0.000009023000000
i value:3.141582653573899
i value:3.141582653573899
i value:3.141582653573899
100000, time spent: 0.000425813000000
i value:3.141591653591083
i value:3.141591653591083
i value:3.141591653591083
1000000, time spent: 0.003703568000000
i value:3.141592553718460
i value:3.141592553718460
i value:3.141592553718460
10000000, time spent: 0.030684762000000
i value:3.141592634029271
i value:3.141592634029271
i value:3.141592634029271
50000000, time spent: 0.159383584000000
i value:3.141592642517028
i value:3.141592642517028
i value:3.141592642517028
100000000, time spent: 0.308462249000000
i value:3.141592644204133
i value:3.141592644204133
i value:3.141592644204133
500000000, time spent: 1.544327589000000

Fig. 4. Single thread C++ output

As we can see, the accuracy of the number & increases with increasing n as
well as the time spent, all as we could have guessed.
Now let's look at the result of the function using parallel calculations (fig.

5).

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

2Threads

PI
PI
PI
n:
PI
PI
PI
n:
PI
PI
PI
n:
PI
PI
PI
n:
PI
PI
PI
n:
PI
PI
PI
n:
PI
PI
PI
n:
PI
PI
PI
n:

value:3.0399259889
value:3.0399259889
value:3.0399259889

10, time spent: 0.0000055240
value:3.1405924869
value:3.1405924869
value:3.1405924869

1000, time spent: 0.0000079260
value:3.1415826536
value:3.1415826536
value:3.1415826536

100000, time spent: 0.0002802390
value:3.1415916536
value:3.1415916536
value:3.1415916536

1000000, time spent: 0.0026887960
value:3.1415925536
value:3.1415925536
value:3.1415925536

10000000, time spent: 0.0163524940
value:3.1415926336
value:3.1415926336
value:3.1415926336

50000000, time spent: 0.0909075070
value:3.1415926436
value:3.1415926436
value:3.1415926436

100000000, time spent: 0.1732624220
value:3.1415926516
value:3.1415926516
value:3.1415926516

500000000, time spent: 0.8619422230

Fig. 5. Multi thread C++ output

Compared to using a single thread, we have significantly reduced

execution time, let's calculate how much (fig. 6).

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

Speed increasing

For n: 10 0.9388124547Xx

For n: 1000 1.1384052485x
For n: 100000 1.5194637434X
For n: 1000000 1.3774075832x

For n: 10000000 1.8764576217X
For n: 50000000 1.7532499709x
For n: 100000000 1.7803182331x
For n: 500000000 1.7916834189x

Fig. 6. Speed increasing using OpenMP

As we can see, at small values of n (10), due to the overhead of switching
and managing threads, the execution time is longer, but increasing the value of n
we get a gain of about 1.8 times (not 2), because part of the time the processor

performs system or other user tasks.

3.2 Calculating the number 7t using Python and multiprocessing library

We will calculate the number m according to the formulas described in
paragraph 3.1. Create a file "lib.py" and implement functions similar to those
described in the previous paragraph. Create a function [7] to calculate the value

of m:

def integral pi(n):

h=1.0/n

pi =0

X = h

for i in range (n):
pi += 4 / (1 + x*x)
x += h

return pi * h

Let's create a function for calculating the number m using the
multiprocessing [8] module:
def integral pi parallel(n):
with Pool (processes=THREAD COUNT) as pool:

pi = pool.map(integral:pi, [n])
return pi

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

We will also create a function for measuring time spent [9], similar to C++

implementation:

def measure time spent (func, count=3):
time spent = float('inf')
for in range(count):
start = time ()
print (func())
finish = time ()
time spent = min(time spent, finish - start)
return time spent

Let's now look at the results of the program. First, as in C ++, let's see how

the functions were performed in one thread (fig. 7).

1Thread
3.039925988907159

3.039925988907159

3.039925988907159

n: 10, time spent: 2.47955322265625e-05
3.140592486923123

3.140592486923123

3.140592486923123

n: 1000, time spent: 0.00024390220642089844
3.141582653573899

3.141582653573899

3.141582653573899

n: 100000, time spent: 0.015168905258178711
3.141591653591083

3.141591653591083

3.141591653591083

n: 1000000, time spent: 0.1394367218017578
3.1415925537184597

3.1415925537184597

3.1415925537184597

n: 10000000, time spent: 1.4326348304748535
3.1415926340292715

3.1415926340292715

3.1415926340292715

n: 50000000, time spent: 6.925243854522705
3.1415926425170277

3.1415926425170277

3.1415926425170277

n: 100000000, time spent: 13.793296813964844
3.141592644204133

3.141592644204133

3.141592644204133

n: 500000000, time spent: 74.03957605361938

Fig. 7. Single thread Python output

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

As we can see, the results regarding the accuracy of calculating the number
7 have not changed, but the execution time has changed, which has become many

times longer. Now let's look at the results of parallel execution functions (fig. §).

2Threads

[3.039925988907159]

[3.039925988907159]

[3.039925988907159]

n: 10, time spent: 0.24919676780700684
[3.140592486923123]

[3.140592486923123]

[3.140592486923123]

n: 1000, time spent: 0.25292181968688965
[3.141582653573899]

[3.141582653573899]

[3.141582653573899]

n: 100000, time spent: 0.2584950923919678
[3.141591653591083]

[3.141591653591083]

[3.141591653591083]

n: 1000000, time spent: 0.39066505432128906
[3.1415925537184597]

[3.14159255371845971]

[3.1415925537184597]

n: 10000000, time spent: 1.6355760097503662
[3.1415926340292715]

[3.1415926340292715]

[3.1415926340292715]

n: 50000000, time spent: 7.148224115371704
[3.14159264251702771

[3.14159264251702771

[3.14159264251702771]

n: 100000000, time spent: 14.035954236984253
[3.141592644204133]

[3.141592644204133]

[3.141592644204133]

n: 500000000, time spent: 68.83858895301819

Fig. 8. Multi thread Python output

At first glance, working hours have hardly changed, let's see if it really is

(Fig. 9).

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

Speed increasing

For n: 10 in 9.95018211703519e-05

For n: 1000 in 0.0009643383347583168
For n: 100000 in 0.05868159862461689
For n: 1000000 in 0.3569214094257913
For n: 10000000 in 0.8759206676634447
For n: 50000000 in 0.9688062017572313
For n: 100000000 in ©0.9827117259772752
For n: 500000000 in 1.0755533659202519

Fig. 9. Speed increasing using multiprocessing

As we can see, the operating time is less than functions with one process
only at very large values of n. All this is due to the fact that two processes were
created, which shared the data, the load, and Python did not use the full computing
potential of the system due to not very complex calculations in the function.

It's time to compare all the results, so let's do it in the form of a table (tabl.

).
Table 1
Results comparing
n\language | Python/1Threads | Python/2Threads | C++/1Thread C++/2Threads
10 0.000024795 0.249196767 0.000005186 0.000005524
103 0.000243902 0.252921819 0.000009023 0.000007926
10° 0.015168905 0.258495092 0.000425813 0.000280239
10° 0.139436721 0.390665054 0.003703568 0.002688796
107 1.432634830 1.635576009 0.030684762 0.016352494
5% 107 6.925243854 7.148224115 0.159383584 0.090907507
108 13.793296813 14.035954236 0.308462249 0.173262422
5% 108 74.039576053 68.838588953 1.544327589 0.861942223

As we can see, the fastest option is to implement in C ++ using OpenMP.

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

Conclusions. In the course of this work, parallel work on Python and C ++
was considered. As an example, programs for calculating the number n were
optimized. In a comparison with the C ++ programming language and the
OpenMP directive, it was determined that the Python programming language is
much slower even with the use of the multiprocessing library. This is because the
Python programming language is a dynamically typed and interpreted
programming language.

Python is very easy to learn, has intuitive syntax, but is much slower than
C ++, especially with the OpenMP module.

In the future, we are going to dive a bit dipper in the multiprocessing
module with numpy [10] objects. It is supposed to be way faster in compare to
just multiprocessing module.

Full code 1s accessible via link in the references.

References

1. URL: https://www.openmp.org

URL: https://github.com/Vlad-Fliahin/Paralle]Programming

URL: https://www.python.org

URL: https://jupyter.org

URL: https://www.anaconda.com/products/individual

SN i

URL: https://docs.microsoft.com/en-

us/cpp/parallel/openmp/reference/openmp-library-reference?view=msvc-170

7. URL: https://jupyterlab.readthedocs.io/en/stable/

8. URL: https://docs.python.org/3/library/multiprocessing.html

9. URL: https://www.w3schools.com/python/python_sets.asp

10.URL: https://numpy.org/doc/stable/index.html

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

