
International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

Computer Science

UDC 004.02

Oliynyk Olena

Senior Lecturer of Software Engineering Department

Kharkiv National University of Radioelectronics

Mykhnevych Dmytro

Student of the

Kharkiv National University of Radioelectronics

PARALLELISM AND CONCURRENCY IN GOLANG. COMPARISON

WITH OTHER PROGRAMMING LANGUAGES (C#, JAVA, C)

Summary. Comparison of computational complexity of parallel programs

written on Go, C#, Java, C.

Key words: parallel programming, Go, goroutines.

The amount of data that needs to be processed is increasing every day. It is

almost impossible to imagine software today that does not use some form of

parallelism or concurrency. The article will talk about the comparison of the

efficiency of executing parallel programs in the Go programming language, which

was created for the development of multi-threaded programs, with other

programming languages such as C #, Java, C.

Go is an open-source programming language developed by the Google

team. Go tries to combine the simplicity of dynamically typed languages such as

Python, fast compilation, and garbage collection.

This article will describe several common practical problems that will be

solved using multithreading or asynchrony. Installation guide and link to the full

code are also included.

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

1. SETTING UP THE ENVIRONMENT

To run the code in the Go programming language, you need to do the

following:

1. Since Go often uses open source repositories, you need to install Git on

your computer (https://git-scm.com/download/win).

2. Download the Go compiler by selecting the appropriate version

(https://golang.org/doc/install). To verify the successful compiler installation, you

can open a command prompt and enter the “go version” command.

3. Check or add the appropriate system environment variable (see Fig. 1.):

Fig. 1. Setting the environment variable

4. Download IDE for Go programming language. JetBrains' GoLand

development environment is the best option for comfortable Go programming.

You can download the IDE at https://www.jetbrains.com/ru-

ru/go/download/#section=windows.

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

2. COMPARISONS OF PARALLEL PROGRAMS

2.1 Finding the maximum number in a matrix

Formulation of the problem: find the maximum number in the matrix of

size 100 * 1000000. To compare the performance of the Go programming

language, implement the solution of the corresponding problem in the Java and C

programming languages. Both solutions must use parallelism, concurrency, or

asynchrony.

2.1.1 Go implementation

First, we create a 100 * 1000000 matrix and fill it with random numbers.

Then the generated matrix is passed to the findMaxValue function, which in turn

does the following:

1. Creates a buffered channel into which the maximum elements of each

row of the matrix will be written. Creates a sync.WaitGroup structure and adds

matrixSearcher goroutines there, the number of which is equal to the number of

rows in the matrix. At the same time, it launches these goroutines, passing the

current matrix row and a channel for recording the results into them.

2. Launches another goroutine that waits for the previous goroutines to

complete and closes the channel for results so that there is no deadlock when

reading from the channel in the main function.

3. From the obtained results chooses the maximum and returns it.

The Go implementation is shown below:

func findMaxValue(matrix [][]int) int {

 rowsAmount := len(matrix)

 wg := new(sync.WaitGroup)

 results := make(chan int, rowsAmount)

 for i := 0; i < rowsAmount; i++ {

 wg.Add(1)

 go matrixSearcher(matrix[i], wg, results)

 }

 go func() {

 wg.Wait()

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

 close(results)

 }()

 max := math.MinInt32

 for val := range results {

 if val > max {

 max = val

 }

 }

 return max

}

func matrixSearcher(row []int, wg *sync.WaitGroup, resultChannel chan

int) {

 defer wg.Done()

 max := math.MinInt32

 for i := range row {

 if row[i] > max {

 max = row[i]

 }

 }

 resultChannel <- max

}

2.1.2 Java implementation

Java implementation is similar to Go implementation but uses a different

means of parallel execution of the program, namely the ExecutorService, which

creates a specified number of futures, which will then execute the given list of

tasks. The task is to find the maximum element in the current row of the matrix.

The largest one is selected from the obtained results.

The Java implementation is shown below:

public static int matrixMaxValueParallel(int[][] matrix) {

 try {

 ExecutorService executor =

Executors.newFixedThreadPool(8);

 List<Callable<Integer>> tasks = new ArrayList<>();

 for (int[] row : matrix) {

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

 Callable<Integer> task = () -> getRowMaxValue(row);

 tasks.add(task);

 }

 List<Future<Integer>> futures = executor.invokeAll(tasks);

 List<Integer> integers = new ArrayList<>();

 for (Future<Integer> future : futures) {

 integers.add(future.get());

 }

 executor.shutdown();

 return Collections.max(integers);

 } catch (InterruptedException | ExecutionException e) {

 e.printStackTrace();

 }

 return Integer.MIN_VALUE;

 }

 private static int getRowMaxValue(int[] row) {

 int max = Integer.MIN_VALUE;

 for (int number : row) {

 if (number > max) {

 max = number;

 }

 }

 return max;

 }

2.1.3 C implementation

The C implementation uses the same algorithm as the Java and Go

implementation. To run the program in parallel, we used the pthread library,

which can be downloaded using the package manager vcpkg:

https://vcpkg.io/en/packages.html.

The C implementation is shown below:

void* find_max_elem(void* thread_info) {

 int max = INT_MIN;

 Thread_Args* args = (Thread_Args*)thread_info;

 int to_row = args->from_row + args->batch_size;

 for (int i = args->from_row; i < to_row; i++) {

 for (int j = 0; j < args->column; j++) {

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

 if (matrix[i][j] > max) {

 max = matrix[i][j];

 }

 }

 }

 int index = args->from_row / args->batch_size;

 result[index] = max;

 return 0;

}

void example1(int row, int column) {

 result = (int*)malloc(NUM_THREADS_FIRST_EXAMPLE * sizeof(int));

 pthread_t threads[NUM_THREADS_FIRST_EXAMPLE];

 for (int i = 0; i < NUM_THREADS_FIRST_EXAMPLE; i++) {

 Thread_Args* ta = new Thread_Args();

 ta->batch_size = row / NUM_THREADS_FIRST_EXAMPLE;

 ta->column = column;

 ta->from_row = i * ta->batch_size;

 pthread_create(&threads[i], NULL, find_max_elem, (void*)ta);

 }

 for (int i = 0; i < NUM_THREADS_FIRST_EXAMPLE; i++) {

 pthread_join(threads[i], NULL);

 }

 int max_element = get_max_arr_element(result,

NUM_THREADS_FIRST_EXAMPLE);

 free(result);

}

2.1.4 Results

After the above-described algorithm was implemented in all three

programming languages, the program execution time was measured.

The following results were obtained:

Table 1

Maximum number search execution time
Go Java C

29.9 milliseconds 34.2 milliseconds 51 milliseconds

It can be seen from the table that the execution on Go took the least time.

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

2.2 Sudoku validation

Formulation of the problem: the input is sudoku (9 * 9 matrix), which

can be filled completely or incompletely. It is necessary to make sure that there

are no errors in the current sudoku (i.e., there are no repetitions in rows, columns,

and 3 * 3 squares).

2.2.1 Go implementation

The input to the isSudokuValid function is a 9 * 9 matrix, which is a field

for playing Sudoku. The matrix can be filled completely, or it can be incomplete.

The isSudokuValid function creates 5 goroutines that will work in parallel: the

first goroutine checks for duplicates in rows, the second for columns, and the next

three for duplicates in squares (3 squares for each goroutine). All results are

recorded in the appropriate channel. The sync.WaitGroup structure is used for

synchronization.

Below is the Go implementation of validating rows of a sudoku:

func sudokuLineValidator(matrix [9][9]int, sudokuRowNum int, wg

*sync.WaitGroup, resultChannel chan bool) {

 defer wg.Done()

 for i := sudokuRowNum * 3; i < (sudokuRowNum + 1) * 3; i += 3 {

 for j := 0; j < len(matrix); j += 3 {

 squareDictionary := map[int]int{}

 for sqi := i; sqi < i + 3; sqi++ {

 for sqj := j; sqj < j + 3; sqj++ {

 squareDictionary[matrix[sqi][sqj]] += 1

 }

 }

 if !checkElementsDistinct(squareDictionary) {

 resultChannel <- false

 return

 }

 }

 }

 resultChannel <- true

}

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

func columnsValidator(matrix [9][9]int, wg *sync.WaitGroup,

resultChannel chan bool) {

 defer wg.Done()

 columnDictionary := map[int]int{}

 for i := 0; i < len(matrix); i++ {

 for j := 0; j < len(matrix[i]); j++ {

 columnDictionary[matrix[j][i]] += 1

 }

 if !checkElementsDistinct(columnDictionary) {

 resultChannel <- false

 return

 }

 columnDictionary = map[int]int{}

 }

 resultChannel <- true

}

2.2.2 C# implementation

The C # implementation uses the same algorithm as the Go implementation,

however asynchronous execution will be achieved using Tasks objects.

Below is the C# implementation of validating rows of a sudoku:

 private bool RowsValidator(int[,] sudoku)

 {

 for (int i = 0; i < sudoku.GetLength(0); i++)

 {

 Dictionary<int, int> rowDictionary = new();

 for (int j = 0; j < sudoku.GetLength(1); j++)

 {

 int currentElement = sudoku[i, j];

 if (rowDictionary.ContainsKey(currentElement))

 {

 rowDictionary[currentElement]++;

 }

 else

 {

 rowDictionary[currentElement] = 1;

 }

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

 }

 if (!IsDictionaryUniq(rowDictionary))

 {

 return false;

 }

 }

 return true;

 }

 private static bool IsDictionaryUniq(Dictionary<int, int>

dictionady)

 {

 return !dictionady.Select(el => new

 {

 key = el.Key,

 value = el.Value

 }).Where(n => n.key != 0 && n.value > 1).Any();

 }

 }

}

2.2.3 C implementation

The C implementation uses the same algorithm as the Go and C#

implementation, however parallel execution will be achieved using pthread

library.

Below is the C implementation of validating rows of a sudoku:
void* rows_validator(void* index_for_result_pointer) {

 int index_for_result = (int)index_for_result_pointer;

 for (int i = 0; i < SUDOKU_SIZE; i++)

 {

 int* row_elements = (int*)malloc(SUDOKU_SIZE * sizeof(int));

 for (int j = 0; j < SUDOKU_SIZE; j++)

 {

 int currentElement = sudoku[i][j];

 row_elements[j] = currentElement;

 }

 if (!all_elements_uniq(row_elements))

 {

 free(row_elements);

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

 result[index_for_result] = 0;

 return NULL;

 }

 }

 result[index_for_result] = 1;

 return NULL;

}

bool all_elements_uniq(int* arr)

{

 int origVal = 0, newVal = 0;

 for (int i = 0; i < SUDOKU_SIZE; i++) {

 origVal = arr[i];

 for (int k = i + 1; k < SUDOKU_SIZE; k++) {

 if (origVal != 0 && origVal == arr[k])

 {

 return false;

 }

 }

 }

 return true;

}

2.2.4 Results

After the above-described algorithm was implemented in all three

programming languages, the program execution time was measured.

The following results were obtained:

Table 2

Sudoku validation execution time
Go C# C

536800 nanoseconds 789 microseconds 3 milliseconds

It can be seen from the table that the execution on Go took the least time

and the implementation on C is the slowest.

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-18

Conclusions. We can see from the results that the C program is slower in

two examples. This can be explained by the fact that when writing code in the C

#, Java and Go programming languages, not threads were created, but add-on

objects: for C # - Tasks objects, for Java - Future objects, for Go - goroutines.

There are no such add-ons in the C programming language, so threads must be

created directly.

The implementation of parallelism and concurrency in the Go programming

language is very different from the implementation in languages such as C # and

Java, so it would be good to study this technology for a better understanding of

concurrency and multithreading.

Full code from the examples is accessible via link

https://github.com/DimaMykhnevych/ParallelismGolang.

In conclusion, Go is fast, so if you focus on speed when developing a

product, Go can be one of the candidates.

References

1. Go documentation. URL: https://go.dev/doc/ (date of the application

12.12.2021).

