
International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-19

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-19

Computer Science

UDC 004.02

Oliynyk Olena

Senior Lecturer of Software Engineering Department

Kharkiv National University of Radioelectronics

Tisheninova Varvara

Student of the

Kharkiv National University of Radioelectronics

PARALLELISM AND CONCURRENCY IN HASKELL

Summary. Comparison of computational complexity of parallel programs

written on Haskell with standard modules Concurrent and Parallel.

Key words: parallel programming, Haskell, concurrency, threads,

multithreading.

The exponential growth in data processing and networking speeds means

that parallel architecture is not just a good idea, it is necessary.

It is hard to remember complex software that relies on execution in a single

thread, neglecting the ability to speed up. Today, all developers use parallelism or

concurrency.

This article will discuss the effectiveness of parellism and concurrency in

functional programming by the example of the Haskell programming language,

and discuss the differences from the executions in other languages.

Haskell is a standardized linear functional programming language for

general purposes, based on lambda calculus. The concept of the language is the

idea of mathematician Haskell Carry, who wrote, "the proof is the program, and

the formula to be produced is the type of program. It is in honour of H. Carry's

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-19

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-19

name was given to the language. His ideas became the basis for all functional

programming languages.

Today, Haskell has become a much-demanded language in many areas. It

is used for quick development of reliable, short and correct programs.

This article will describe the theoretical problem to be solved with

multithreading or asynchrony. An installation guide and a link to the full code is

also included.

1. CONCURRENCY AND PARALLELISM IN HASKELL

Haskell is a purely functional programming language, so it is much more

interactive and interactive than other programming languages.

Haskell is often touted as the language for multi-core programming and

easier parallelization than corresponding imperative programs.

Most languages do not distinguish between parallel computation and

multithreading, providing a single toolkit for them. Haskell has a different set of

tools and abstractions for each of these tasks.

A parallel program uses a multiplicity of computing units (processors, cores,

GPUs, etc.) to speed up computation. We divide the work between simultaneously

running computational units in the hope that the gains from parallelism will

outweigh the extra cost of it. Accelerating computation is the only goal of

parallelism.

Multithreading, by contrast, is the use of several control threads in a single

program. These threads execute "concurrently" in the sense that the side effects

of the threads interleave with each other. The goal of multithreaded programming

is to maintain modularity when interacting simultaneously with multiple external

agents (user, database, etc.). The number of processors in this case does not

matter. Thus, parallelism requires multiple processors and multithreading requires

side effects.

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-19

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-19

The notion of "control threads" is meaningless in the context of pure

computation, because it has no side effects. Thus, multithreading only makes

sense in the context of an IO monad. Moreover, multithreaded computation is

fundamentally nondeterministic, because its task is to interact with external

agents. Moreover, where there is nondeterminism, there is pain in debugging,

testing, and support.

2. SETTING UP THE ENVIRONMENT

To start writing and run the code in the Haskell programming language, you

need to install Haskell Platform and configure your IDE for it:

1. First of all, you need to download and install the Haskell Platform

(http://www.haskell.org/platform/windows.html).

2. Then you need to install IDE. I recommend Sublime Text 3, which you

can download on official website (http://www.sublimetext.com/3).

3. After this you need to install Haskell tools. Run in terminal:
cabal install cabal-install
cabal update
cabal install aeson
cabal install haskell-src-exts
cabal install ghc-mod
cabal install cmdargs
cabal install haddock

 4. Then install hdevtools (https://github.com/mvoidex/hdevtools) and

unpack it to some folder. After this go to that folder and run:
runhaskell Setup.hs configure --user
runhaskell Setup.hs build
runhaskell Setup.hs install

3. COMPARISONS OF CONCURANCY AND PARALLELISM

It is necessary to try in practice to understand the differences between

multithreading and parallelism in Haskell. To do this, solve the problem of

cracking the password hash using these two methods.

Formulation of the problem. Find the hash function prototype. To

compare the performance of the multithreading and parallel programming

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-19

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-19

implement the solution of the corresponding problem with Control.Concurrent

and Control.Parallel modules.

3.1 Bruteforce algorithm

First, we create a module which has two functions:

1. Hash converts string to sha256.

2. PasswordList generates a list of passwords of a given length,

consisting of the specified letters.

The Haskell implementation is shown below:

module Bruteforce.Common where

import Data.Word

import Text.Printf

import Data.Digest.SHA2

passwordList :: String -> Int -> [String]

passwordList charList len =

 stream beginState

 where

 beginState = replicate len charList

 endState = replicate len [last charList]

 nextState ((_:[]):xs) = charList : nextState xs

 nextState ((_:ys):xs) = ys : xs

 nextState x = error $ "nextState " ++ show x

 stream st =

 let pw = map head st in

 if st == endState then [pw]

 else pw : stream (nextState st)

hash :: String -> String

hash =

 concatMap (printf "%02x" :: Word8 -> String) .

 toOctets . sha256Ascii

3.2 Multithread implementation

Multithread implementation uses Control module and our custom

Bruteforce module.

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-19

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-19

The getNumCapabilities function returns the number of operating system

threads used by the runtime system. As will be shown below, this number can be

set at program startup. In this case, it makes sense to use as many lightweight

threads as real threads are used.

The program uses two queues. Actually, they are just lists, not queues, but

I think it makes more sense to think of them as queues. The taskQueueue has the

type MVar [String]. It contains tasks, which are prefixes of passwords to try out.

The thread takes the prefix from the queue (the head of the list) and goes through

all the passwords with that prefix. The resultQueue queue is of type MVar [

[String]]. When the thread completes the task, it puts into this queue (also a list

head) the list of strings it would like to display.

Finishing the main thread causes the whole program to terminate.

Therefore, it must be terminated only after the child threads are finished. To stop

the main thread from sitting idle, let us give it some work. This work is to clean

up the resultQueue and display the results of the other threads' work. Strictly

speaking, we have to do this because I/O is not thread safe in Haskell. At the same

time the main thread counts how many tasks are currently left to do. When the

task counter is zeroed, the main thread is terminated.

The implementation is shown below:

import Bruteforce.Common

import Control.Concurrent

import Control.Monad

import Control.DeepSeq

workerLoop :: MVar [String] -> MVar [[String]] -> String -> Int ->

 [String] -> IO ()

workerLoop taskQueue resultQueue charList pwLen hashList = do

 maybeTask <- modifyMVar taskQueue

 (\q -> return $ case q of

 [] -> ([], Nothing)

 (x:xs) -> (xs, Just x))

 case maybeTask of

 Nothing -> return ()

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-19

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-19

 Just task -> do

 let postfixList = passwordList charList $ pwLen - length task

 pwList = map (task ++) postfixList

 pwHashList = [(pw, hash pw) | pw <- pwList]

 rslt = [pw ++ ":" ++ h | (pw,h) <- pwHashList,

 h `elem` hashList]

 rslt `deepseq` modifyMVar_ resultQueue (\q -> return $ rslt:q)

 workerLoop taskQueue resultQueue charList pwLen hashList

mainLoop :: MVar [[String]] -> Int -> IO ()

mainLoop _ 0 = return ()

mainLoop resultQueue taskNumber = do

 results <- modifyMVar resultQueue (\q -> return ([], q))

 case results of

 [] -> do

 threadDelay 100000 -- 100 ms

 mainLoop resultQueue taskNumber

 _ -> do

 mapM_ (mapM_ putStrLn) results

 mainLoop resultQueue (taskNumber - length results)

main :: IO ()

main = do

 let hashList = [

 -- 1234

 "03ac674216f3e15c761ee1a5e255f067" ++

 "953623c8b388b4459e13f978d7c846f4",

 -- r2d2

 "8adce0a3431e8b11ef69e7f7765021d3" ++

 "ee0b70fff58e0480cadb4c468d78105f"

]

 pwLen = 4

 chunkLen = 2

 charList = ['0'..'9'] ++ ['a'..'z']

 taskList = passwordList charList chunkLen

 taskNumber = length taskList

 workerNumber <- getNumCapabilities

 taskQueue <- newMVar taskList

 resultQueue <- newMVar []

 workerNumber `replicateM_` forkIO (workerLoop taskQueue resultQueue

 charList pwLen hashList)

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-19

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-19

3.3 Parallel implementation

A list of all possible passwords is generated on the fly; we do not store it or

the hash list entirely in memory. Haskell's laziness has allowed us to achieve

modularity (password generation and filtering are separated from each other; in

languages with an applicative computation order, we would have to use iterators,

generators).

Algorithmically partition the password space into sets of sufficiently large

size, and then run the computation of the whole filterMatched in parallel for each

such set. After that, we merge the results into one using concat.

First, we will generate prefixes of a certain length (the prefix length will

control granularity), and to each prefix we will assign all possible residues.

Passwords with a common prefix will be combined into sets, which will be

processed in parallel.

The implementation is shown below:

import Bruteforce.Common(hash)

import Control.Monad(replicateM)

import Control.Parallel.Strategies(using, parList, rdeepseq)

type Hash = String

type Password = String

type CharList = String

-- | Sequential version of hash bruteforcing.

-- Given a list of candidate passwords, compute

-- hashes and compare to known ones. Return passwords (together with

-- its hashes) that can be found in the list of known hashes.

filterMatched :: [Hash]

 -> [Password]

 -> [(Password, Hash)]

filterMatched knownHashes candidates =

 filter (elemOf knownHashes . snd) pwHashList

 where hashes = map hash candidates

 pwHashList = zip candidates hashes

 elemOf = flip elem

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-19

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-19

-- | Parallel version of hash bruteforcing.

-- Split password space into chunks and apply

-- sequential bruteforce algorithm to each chunk

-- in parallel.

filterMatchedPar :: Int

 -> CharList

 -> [Hash]

 -> [(Password, Hash)]

filterMatchedPar pwLen charList knownHashes = concat matched

 where prefLen = 1

 grouped = groupedPasswords pwLen prefLen charList

 matched = map (filterMatched knownHashes) grouped

 `using` parList rdeepseq

-- | Generate passwords of given length, grouped by

-- common prefix (length of a prefix is provided as well).

-- This function is used for parallelization. Each spark

-- should process its own subset of password space, which

-- is generated lazily.

groupedPasswords :: Int -> Int -> CharList -> [[Password]]

groupedPasswords totalLen prefLen charList =

 map (prependPrefix postfixes) prefixes

 where prefixes = replicateM prefLen charList

 postfixes = replicateM restLen charList

 restLen = totalLen - prefLen

 prependPrefix post pre = map (pre ++) post

main :: IO ()

main = do

 let hashList = [

 -- 1234

 "03ac674216f3e15c761ee1a5e255f067" ++

 "953623c8b388b4459e13f978d7c846f4",

 -- r2d2

 "8adce0a3431e8b11ef69e7f7765021d3" ++

 "ee0b70fff58e0480cadb4c468d78105f"

]

 pwLen = 4

 charList = ['0'..'9'] ++ ['a'..'z']

 -- SEQUENTIAL VERSION USAGE EXAMPLE

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-19

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-19

 -- allPasswords = replicateM pwLen charList

 -- matched = filterMatched hashList allPasswords

 matched = filterMatchedPar pwLen charList hashList

 mapM_ (putStrLn . showMatch) matched

 where showMatch (pw, h) = pw ++ ":" ++ h

3.4 Results

After the above-described algorithm was implemented in one thread and

multi threads, using two different modules.

The programs execution time was measured.

The following results were obtained:

Table 1

Bruteforce encryption execution time
One thread Concurrency Parallel
12.7 seconds 3.8 seconds 3.6 seconds

It can be seen from the table that the execution on one thread takes much

more time than multithreads or parallel implementations.

Conclusions. After analyzing the results, we can say that parallel execution

in Haskell significantly speeds up the program. With multiple threads, we lose

determinism, but we gain time advantage, but with true Haskell parallelism, we

gain runtime advantage without losing determinism of functions.

The implementation of parallelism and concurrency in the Haskell

programming language are very different. It is very good practice to choose and

use technologies depending on the task.

Full example code is available at https://github.com/Varvarya/sha256-

bruteforce-haskell.

As a summary, we can say that Haskell is very well predisposed to parallel

programming and is capable of solving both simple and complex problems that

require fast execution.

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-19

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2021-19

References

1. Haskell official documentation. URL:

https://www.haskell.org/documentation/ (date of the application

17.12.2021).

2. Marlow S. Parallel and concurrent programming in Haskell. Beijing:

O'Reilly. 2013.

