
International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2020-20

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2020-20

Technical science

UDC 004.43

Malyshchenko Nataliia

 Student of the

Kharkiv National University of Radio Electronics

Chernonos Mariia

Student of the

Kharkiv National University of Radio Electronics

Oliinyk Olena

Senior Lecturer of the Department of Software Engineering

Kharkiv National University of Radio Electronics

GOROUTINES IN THE CONCURRENT PROGRAMMING

Summary. The concepts of concurrency and goroutines were reviewed.

Sequential and concurrent program execution were compared.

Key words: concurrency, Go, goroutine, parallelism, programming,

sequential.

 Every day we complete an uncountable number of tasks. Without any

hesitation, we can do many of them simultaneously. In modern world we do not

have enough time to perform tasks one by one. To be extremely progressive and

productive, we must be concurrent and parallel. So do programs.

 To fully understand the problem, we must strictly distinguish concepts of

concurrency and parallelism. Concurrency is the execution of tasks in a certain time

(for example, there are 4 processes and all of them in total are executed within 90

https://doi.org/10.25313/2520-2057-2020-20
https://doi.org/10.25313/2520-2057-2020-20

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2020-20

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2020-20

minutes in turn). An important detail is that tasks do not have to be performed at

the same time, so they can be divided into smaller and interleaved ones. Parallelism

is the execution of tasks at the same time (for example, there are 4 tasks, each one

takes 90 minutes). The name itself implies that they run in parallel. We may say

that parallelism is a subclass of concurrency: before running multiple concurrent

tasks, you need to organize them properly first.

 The concept of goroutines is a must-have in achieving concurrency and

parallelism in Go. A goroutine is an efficient and lightweight multithreading

mechanism, a function that runs concurrently with other goroutines in the same

address space. It can be applied in the tasks:

- where a programmer needs asynchrony. For example, when we work with

a network, a disk, a database, a mutex-protected resource, etc;

- if the execution time of the function is long enough and you can get a gain

by loading other cores.

It is extremely easy to define a goroutine in a program: a programmer just

has to put the «go» operator before the function call.

Fig. 1. Figure and description of the Go Scheduler

https://doi.org/10.25313/2520-2057-2020-20
https://doi.org/10.25313/2520-2057-2020-20

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2020-20

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2020-20

There is also the Go Scheduler, which distribute ready-to-run goroutines to

free machines as can be seen from Figure 1 [1]. In such way we execute a

concurrent program.

Ready-to-run goroutines are executed in turn order, i.e. FIFO (First In, First

Out). The execution of the goroutine is interrupted only when it can no longer be

executed: that is, due to a system call or the use of synchronizing objects

(operations on pipes, mutexes, etc.). There are no time slots for the goroutine to

work, after which it gets back into the queue. For the scheduler to do this, a

programmer needs to call runtime.Gosched() themselves [2].

Because goroutines are closely connected to runtime, there is a Go package

named runtime, that has very important functions to work with goroutines such as

Runtime.Gosched(), as was described above, works with the scheduler and allows

it to execute previous goroutines and then go to next ones. The runtime.Goexit()

stops the goroutine that is currently executed and lets the code statements after the

defer keyword run in the usual order. The runtime.NumGoRoutine() returns the

total number of goroutines that are presented in the program. And then there are

two functions that are related to the CPU, it is runtime.NumCPU(), that returns

number of the CPU’s cores and the runtime.GOMAXPROCS(n), that sets the

number n as the number of CPU’s cores that you want to use when executing your

program.

As was mentioned before, the goroutines are the powerful mechanism

embedded in Go, moreover, the language design implies its usage for concurrent

implementations of programs. There are additional tools for creating concurrency

in the Go such as the channels and select statements, but we would describe them

later.

So, now we need to talk why it is better to use goroutines and not sticking to

the sequential execution when designing applications. Not every task needs

https://doi.org/10.25313/2520-2057-2020-20
https://doi.org/10.25313/2520-2057-2020-20

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2020-20

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2020-20

concurrency, but most of them are performing better when concurrency is involved.

To be more precise, every time you need to manage a few parts of the code that can

be executed independently, i.e. the result of previously performed part won’t affect

the results of the next part’s execution, the concurrency will be better solution

compared to serial program composing. And even in simple tasks, such as

computing the sum of two integers, with goroutines the execution time is

significantly reduced.

As an illustrative example, we’ve written a code (created by the authors,

based on [4]) that consists of two anonymous functions that are calculating the sum

of two integers. In the serial version of program (see Figure 2) anonymous function

#1 executes first, then goes anonymous function #2 and the last stage of executing

is the outputting of elapsed time.

Fig. 2. Sequential implementation of the program

The elapsed time for this fragment of code is 28.011 * 10
-6

seconds. And now

we will run the concurrent code (see Figure 3), where we created a goroutine for

both anonymous functions #1 and #2.

https://doi.org/10.25313/2520-2057-2020-20
https://doi.org/10.25313/2520-2057-2020-20

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2020-20

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2020-20

Fig. 3. Concurrent implementation of program

When executing this program, we got impressive results and a bit different

output statements order. When working concurrently, the program firstly displayed

result of the anonymous function #2, then elapsed time and lastly, the result of an

anonymous function #1. Also, the time of execution was 7.657 * 10
-6

seconds

which is almost four times faster than the serial code.

Although the output order was different from the serial when executing the

concurrent code, this is not the predefined order and it may vary from run to run,

because Go runtime defines and distributes subtasks execution automatically.

Concurrency and parallelism have mostly synonymous meanings, but the

difference is that in parallelism the task is split up to smaller subtasks and

processed on multiple processor units at the same time. As opposed to the

concurrent, parallel applications are executing only one task at a time but dividing

it and completing on the multiple threads. Meanwhile the parallelism waits for the

task to be finished, concurrency is more about multitasking and the overlapping

subtasks lifetimes [3].

https://doi.org/10.25313/2520-2057-2020-20
https://doi.org/10.25313/2520-2057-2020-20

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2020-20

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2020-20

One can think that goroutines are the same as the usual operating system

threads. But that’s not correct. Working with goroutines rather than with threads of

your operating system directly has significant advantages. First of all, goroutines

are using less memory resources than usual operating system threads. A goroutine

has only the 2KB size of stack when initiated, meanwhile OS thread needs

approximately 1MB. Furthermore, when more memory is required, the goroutine

stack is just copied to another place in memory with doubled size. Secondly,

because of their size of stack, the goroutines are much cheaper to run than the OS

threads [2]. For example, we have the computer with two processing units and each

of them supports eight threads. So, in C++ we can use only sixteen threads (most of

the time this number is even less than maximum number of threads due to

background usage of another programs that are also need memory to work

correctly). But with Go, we can run a hundred goroutines just on one thread,

keeping the memory usage rate much lower than with threads. Another one

advantage is that Go runtime controls all scheduling and redirecting part.

Therefore, if you have a goroutine that has to wait for some input, the new thread

will be created and remaining routines will be moved there, so the program

execution time will be the most optimal. Moreover, it’s making concurrency easier

for programmer because he doesn’t need to handle all the edge cases manually.

And lastly, the main principle of Go concurrency is “Do not communicate by

sharing memory; instead, share memory by communicating” [4]. So, there were

invented Go channels, which are the perfect way of safe data sharing. And provided

way of goroutines communication saves us from race conditions and deadlocks,

which are very common problems when working with operating system threads.

 So, as we mentioned before, there are also additional tools in Go for

concurrent programs design. And their abilities are allowing developers to create

https://doi.org/10.25313/2520-2057-2020-20
https://doi.org/10.25313/2520-2057-2020-20

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2020-20

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2020-20

powerful and effective concurrent applications. These tools are the Go channels

and select statements.

 Firstly, a little bit more information about channels. Channels are the built-in

way of the communication between different goroutines. Usually channels are

working in both directions, allowing goroutines not only send data, but receive it.

By default, goroutines are instantiated and existing in the same address space, so

when we’re creating two goroutines and address their execution to the shared

variable, the output of the program can be unpredictable and incorrect. This

happens because we’re “communicate by sharing memory” [4], rather than “share

memory by communicating” [4], which is contradicts the main Go concurrency

concept and makes the code unsafe for execution. Meanwhile, the Go channels are

the pipes for effective access to distributed memory. And what about code safety?

When receiving or sending data, channel is automatically blocking, so the

goroutine won’t continue its execution before it receives data from channel. And if

the channel is empty, goroutine will be waiting for another goroutines to send

needed data to channel and only after receiving will be executed [5]. This is also

working vice versa – the goroutine won’t go to the next step if the data, that was

sent to the channel wasn’t received.

 To create a channel is as easy as create a goroutine. You just need to use the

make() function, as with maps, and in the curly brackets write keyword chan and

the type of data, that you want to fetch. So, the definition of the channel mychan

with integer data will look like the first statement (see Figure 4):

Fig. 4. Definition of the Go channel

https://doi.org/10.25313/2520-2057-2020-20
https://doi.org/10.25313/2520-2057-2020-20

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2020-20

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2020-20

Also the specifics of working with channels is the arrow operator (<–) to

organize communication between goroutines. The second statement (see Figure 4)

is creating a variable var with the data from channel mychan, while the third

statement is sending value of var to the mychan channel.

But it is not all of channel’s possibilities. What if your program will get more

data, than it can process? The program will stop send this data into the channels

because of absence of recipients. Therefore, to deal with it, you may use the data

buffer. If there are no handlers available, there is a need to temporarily store the

data in queue [7]. Channels have built-in buffering support. Buffered channels can

be created using the make() function, the capacity of the pipe is passed as the

second argument to the function. If the channel is empty, then the receiver waits

until at least one element appears in the channel [6].

Buffering on channels is beneficial for performance reasons. Channels

provide a means of passing events between one process and another in case if a

program is designed using an event flow or data flow approach.

There are cases, when a program needs its components to remain in sync

with the stop step. In this case, unbuffered channels are required.

Otherwise, it is usually useful to add buffering to the channels as it works as

an optimization. Deadlock can still be possible though. Buffering must not be

added to fix a deadlock. It is much easier to fix a blocking program by starting with

zero buffering and thinking through the dependencies [6]. If you are sure there is no

deadlock, you can bravely add buffering.

And what if we need to use more than one channel to send and receive data

from multiple goroutines? We can create new channels in if-statements, but this is

not a good code practice, because Go already has special statement to deal with

multichannel situations. It’s called select. The select statement lets a goroutine wait

on multiple communication operations [5]. Select can be compared to switch

https://doi.org/10.25313/2520-2057-2020-20
https://doi.org/10.25313/2520-2057-2020-20

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2020-20

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2020-20

statement but only for Go channels. In each case of select statement you can

describe what operations your code should execute when the data is sent to the

channel or received by it. The further execution of the code will be blocked by

default before at least one channel won’t be ready (i.e. data is received or sent). If

more than one channels are ready to work, the order of case statements execution

will be randomly generated by Go. If you need to handle those parts that are not

listed in case statements, the default case can be specified, this approach allows the

specific code statements to execute when there’s no channels that are ready.

The Go mechanisms for handling concurrency and especially the goroutines

are very useful when designing concurrent programs because they provide

convenient toolset and handling all the work with OS threads, so the developers

don’t need to refer to them directly by themselves. As we found out, goroutines are

also very time-efficient, so we believe that these practices will be adopted by many

other programming languages in the future.

References

1. Myren S. RT capabilities of Google Go. Primo, 2011.

2. Versockas P. Go Scheduler: MS, PS & GS. 2017. URL: https://povilasv.me/

go-scheduler/

3. Cox-Buday K. Concurrency in Go: Tools and Techniques for Developers.

O'Reilly Media, 2017.

4. Hoars A. Communicating Sequential Processes. Prentice-Hall, 1985.

5. Google. Official Golang Documentation. URL: https://golang.org/doc/

effective_go.html

6. Kennedy W., Ketelsen B., St. Martin E. Go in Action. Manning, 2015.

7. Steele T., Kottmann D., Patten C. Black Hat Go: Go Programming For

Hackers and Pentesters. No Starch Press, 2020.

https://doi.org/10.25313/2520-2057-2020-20
https://doi.org/10.25313/2520-2057-2020-20
https://golang.org/doc/effective_go.html
https://golang.org/doc/effective_go.html

