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UNCERTAINTY ESTIMATION AND USAGE FOR DEEP LEARNING
MODELS
BUMIPIOBAHHA TA BUKOPUCTAHHSA HEITEBHOCTI IJIsA
MOJEJIEM TJIMBUHHOI' O HABUAHHSI
N3MEPEHHUE N UCITOJIb3OBAHUE HEYBEPEHHOCTMU J1JIAA
MOJIEJIEM TJTYBOKOI'O OBYYEHUSI

Summary. The default DL approaches in ML tend to output only
prediction, but not an uncertainty measure alongside the prediction. There are
several approaches to DL model modification that allow deciding if the model
can be trusted. The approaches vary by computational load and performance
considering given constraints. In the real world project, it is often not possible
to modify the model or perform retraining to apply common uncertainty
estimation techniques (black box problem).

In the first part of the paper, we aim to measure the uncertainty of the
model in practice. We have researched tolerable perturbations as a way to
enforce noise in the input data. A framework was built that acts as a compound
for a prediction model in image classification tasks and allows output
uncertainty for given samples. For test purposes, a CNN model will be used
over the CIFAR-10 dataset to showcase uncertainty evaluation. We also show
how to use uncertainty values to get data insights into a real-world task.

In the second part, we discuss how to get a model to know when
prediction is uncertain. We built a selective classifier to increase the
performance of the model by narrowing the confidence interval on the input
data and used the aforementioned uncertainty estimations in the rejection
classifier. To showcase classifier features, we made an experiment with a
softmax-based uncertainty classifier (vanilla) and Dirichlet distribution based
value. To measure the performance of the predictor, we took the Brain Tumor
Classification (MRI)[6] dataset as an example. For the received predictors we

measured coverage and selective risks. We have shown that one could get
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significant accuracy gains by using selective models given accurate uncertainty
measure.
Key words: machine learning, deep learning, uncertainty estimation,

selective predictor, image classification.

Annomauis. 3azeuuaii, mexuixu eaubOK020 HABYAHHA HA GUX00I 0AOMb
MINbKU NPOSHO308aHE 3HAYEHHs, ajle He Mipy HeneeHocmi 8 npocHosi. Icuye
be3niy memooie MoOu@iKysamu mooeivb makx, ujo ICHy8amume MONCIUBICTD
OYIHUMU, HACKIIbKU MOOeNi MOdCHA Oogipsimu. L]i memoou 6iOpi3HAIOMbCS
BUMO2AMU 00 OOUUCTIOBATLHUX NOMYIHCHOCMEU [ MOYHOCMI 3 YPAX)8AHHAM
3a0anHux obmedxceHvb. Ha npaxmuyi, uacmo He ICHYE MOINCIUBOCHII
Mooughikysamu mooenb abo nepempeHysamu 3 UKOPUCTNAHHAM MEXHIK OYIHKU
HeBnesHeHOoCmi (MoOeli muny 4YOpHULL AUWUK).

YV nepwit wacmuni cmammi, Mu GU3HAYUMO [ OOCHIOUMO MOJEPAHMHI
nepemeopenHs K 3acid 000a8aHHs WyMy y 6XIOHI OaHi 3 Memoi GUMIpSMuU
HenegHicmb Mmoldeni. Mu nobydyemo ¢petimeopk, saxuii Oyde eusHauamu
HesnegHeHicmb Ol 3a0a4 NOG'sa3aHux 3 Kiacugikayieto 306padicens. J[ns
mecmy, o0ys yzamuii oamacem CIFAR-10, wo6 nopaxysamu nesneguicmo Ha
3006paxcennsx. Iloxazano, Ax mempuxa HesnegHeHOCMI 0038014€ OMPUMAMU
000amKo8y iHphopmayiro npo Habip OaHUX HA NPAKMUYIL.

Ino0i 8adxcnueo po3ymimu, Koau MoOenb He 8NEeGHEHA 8 CBOEMY NPOSHO3I.
YV opyeiti wacmuni cmammi, 6yoe nob6yooganuil 8ubIpKosull Kiacugikamop 3
Memow  NONINWEHHsT MOYHOCMI MOOeNi WIAXOM — 38VJCeHHS  008IpH020
inmepsany. Knacupixamop  6yoe  ompumyeamu  Ha  6Xi0  MeMPUKY
HegnesHeHocmi 6 npocHo3i. 1lJo6 noxazamu sk npayroe xknacughikamop, 08
npoGedeHUll eKCHEPUMEHM 3 BUKOPUCTIAHHAM SOftmax-3Ha4eHHs. HeGNeGHEeHOCMI
i HesnegHenicmioo Ha niocmagi posnodiny [ipixne. Illo6 oyinumu saxicmo
npeduxkmopa, 60ye euxopucmanui nabip oanux Brain Tumor Classification

(MRD[6]. [ns ompumanux npeouxmopoé eumipsmni noxpumms [ 6uOIPKOSULL
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pusux. Ilpodemoncmposano, wo MOdMCHA OMpUMaAmMu 3HAYHULU NPUPICM
MOYHOCMI MOOEJ, AKUJ0 BUKOPUCTOBYBAMU XOPOULl OAHI NPO HeBNeB8HiCMb.
Kniwwuosi cnosa: mawunne HaguamHs, 2iuOUHHE HABYAHHSA, BUSHAYUEHHS

HenesHoCmi, 6UDIPKOBULL NPEOUKNOP.

Annomayun. O0viuHo, MmexHUKU 21y00K020 00yUeHUsi Ha 8blxo0e 0aom
MONILKO NpeocKazaHue, HO He Mepy HeY8epeHHOCMU 6 NPeoCKA3aAHUU.
Cywecmgyem MHOHCECMBO MemO0008 MOOUPUYUposams Mooelb mak, 4mo
0yoem 803MOINCHOCHb OYEHUMb, HACKOJIbKO MOOEIU MONCHO 008epsimbv. Imu
MemoObl OMAUYAIOMCA MPeOOBAHUAMU K GLIYUCTUMENbHBIM MOUWHOCMAM U
MOYHOCMU C YY4emoM 3a0auHulXx ocpanuyenull. Ha npaxkmuxe, wacmo uem
B03MOJNCHOCIU ~ MOOUDUYUPOBams — MoOelb  aubo  NnepempeHuposams ¢
UCNONIL308AHUEM MEXHUK OYEHKU HEYBEPEHHOCIU (MOOeU MUNA YEPHBIU SUWUK).

B nepeoii uacmu cmamvu, Mol onpedenum u uccieoyem monepanmHvle
npeobpazosanus Kak cpedcmao 000asieHUsi uyma 60 6X00Hble OAHHbLE C Yelblo
usmMepums HeygepeHHocms moodeau. Mol nocmpoum Gpeumeopx, Komopuwlil
Oyoem nosepx npeocKazvléaroujeil. Mooeau Onpeoeisims Hey8epeHHOCHmb OJis
3a0a4 Ce;A3aHHLIX ¢ Kaaccuguxayuel uzoopadxcerut. /[nsn mecma, Ovin 631m
oamacem CIFAR-10, umobvl nocuumamov Hey8epeHHOCMb HA U300PANCEHUSX
onsa npumepa. bydem noxazamo, kax mempuka Hey8epeHHOCMU NO360Jislem
ROYYUMsb OONOJIHUMENbHYIO UHGOpMAYUIO 0 HADOPEe OAHHBIX HA NPAKMUKE.

Hnocoa easicno nonumams, Ko20a MoOelb He Y8epeHa 6 CB8oeM
npeockasanuu. Bo emopoii yacmu cmamovu, 0yoem nOCMpoeH 6blOOPOUHbLLL
Kaaccugukamop ¢ yenvio YIYUuleHUus MOYHOCMU MOOelu NYmeM CYHCEeHUs.
dogepumenvHoeo uumepsana. Knaccuguxamop 6yoem nonyuamv Ha 6x00
MempuKy HeysepeHHOCcmu 8 npedckazanuu. Ymobel nokazams Kax pabomaem
Kaaccuguxkamop, Obll NPoGeOeH 3KCHEPUMEHM C UCNOIb308aAHUEM Softmax-
3HAYEHUsl HeYB8EePEeHHOCMU U HeY8ePeHHOCMbI0 HA OCHOBAHUU pPACHpedeeHUs
Jlupuxne. Ymobwvr oyenums Kawecmeo npeouxmopd, Oblil UCNOJIb308AH HAOOD

oannwvix Brain Tumor Classification (MRI). Jus nonyuennvix npeouxmopos
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umMepenvl NoKpvimue U 6vl00poyHvle pucku. Ilpodemoncmpuposano, umo
MOJICHO  NOAYYUMb  3HAYUMENbHBIUL NPUPOCH  MOYHOCMU  MOOenu, eciu
UCNONIL308aMb XOpouiue OaHHble O HeY8epeHHOCIU.

Kntouesvie cnosa: mawunnoe obyuenue, 21ybO0Kkoe  oOyuenue,

onpeoesieHue Hey8epeHHOCMU, 8b1O0OPOYUHDBIL NPEOUKMOP .

Part I. Background. Uncertainty is the state of having limited knowledge
where it is impossible to exactly describe the existing state. Understanding if a
model is under-confident or falsely overconfident can help reason about the
model and dataset. There are several types of uncertainty, but aleatoric and
epistemic are most widely used. Aleatoric uncertainty is important in cases
where parts of the observation space have higher noise levels than others.
Concrete examples of the aleatoric uncertainty in stereo imagery are occlusions
(parts of the scene a camera can’t see), lack of visual features (i.e a blank wall),
or overexposed (underexposed) areas. Epistemic uncertainty measures the
influence of a lack of training data over model false predictions. A possible way
to observe the epistemic uncertainty in action is to train one model on part of a
dataset and to train a second model on the entire. The model trained on part of
the dataset will have higher average epistemic uncertainty. It is important
because it identifies situations the model was never trained to understand (lack
of training data). It is also helpful in dataset exploration, e.g. it shows whether a
model is using primary base parameters instead of unwanted secondary features
of the dataset.

From the implementation perspective, it matters if the model is open for
modification. Generally speaking, there are three cases of model modification
availability: black-box, grey-box and white-box. The black-box stands for a
closed model, where there is no access to the internal module structure. Grey-
box is a case when the internal structure of the model is accessible, while

parameters are not. White-box case describes a model fully available for
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modification. The uncertainty estimation of the black-box model is particularly
challenging but appears to be a more universal solution.

Problem statement. We will be looking to solve the aleatoric uncertainty
estimation problem for the black-box model. We have model F(x) that is trained
to produce class affiliation prediction. We know the shape and the type of the
input x, the classes that model supposed to infer, and meaning of the model
output y. Since the model is black-box, there is no possibility to either read or
write model structure and weights. We have to propose a framework that could
be built on top of the model to estimate the uncertainty of the model for a given
input.

Related work. A neural network is usually composed of a large number
of parameters and activation functions, which makes the posterior distribution of
a network prediction hard to interact with. To approximate the posterior,
existing methods deploy different techniques, mainly based on Bayesian
inference and Monte-Carlo sampling[5]. There are other options besides
essentials, including modifications of the algorithms.

The suggested approach. To derive the softmax distribution we will
have to perform multiple inferences of the same sample with different noise
factors (according to the subject area). To force the data uncertainty, we will use
tolerable perturbations. Tolerable perturbation is a method of causing small
changes in the model input, that exploits model dependence on the input
transformations. Let T denote a transformation. Then T'’denotes an inverse
transformation and T - T'cancels the transformation. If input x is an H =
Wmatrix, the variance et estimated through transformation is also an H * W
matrix.

We will be using rotate, mirror, white noise, and translate perturbations
with random parameters. If we train a model using a data augmentation with a

similar idea, we might expect a reduction in variance when applying
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perturbations to test samples. The understanding of tolerable and intolerable
perturbation might be inferred based on the knowledge of the subject area.

The first primary aim would be to implement a few algorithms and
research its behavior given certain synthetic cases. We will try a few datasets
within our research but begin with cifarl0[1]. For the experiment purposes, the
whole airplane class images were cut off the testing set. We expect to find that
the undertrained class should stand out from the others in terms of uncertainty
measure. Ideally, the measurements should provide formal criteria for the class
that lacks data samples. After the initial train with 40 epochs, the model scored
73% of accuracy, given it did not encounter any images of airplane class.

To derive uncertainty estimation, the model should be tuned to provide
softmax distribution rather than softmax output. As we are focused on the black-
box estimation, we should get the distribution first. Considering there is no
access to the model structure, we have to get the different outputs for the single

sample. To achieve that, tolerable perturbations were used[2] (fig 1).

0
0 S 0 25 0 25 0 235 0 25 0 25

Fig. 1. Perturbation example. Left to right: original image, skew, mirror, white noise,

rotate, translate

Results interpretation. Expectedly, the model produces different
softmax outputs for each perturbation of the same sample, which forms certain
distribution of softmax. Given the distribution, several scales of uncertainty
might be calculated.

u; = Xp;*log ()

The formula gives a per-class entropy for a given sample. This data gives
insights into the model performance. The following observations were received.
For each sample, we perform 50 tolerable perturbations and calculate entropy

with the formula given above.
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airplane automobile

airplane automobile  bird at deer dog frog horse ship truck airplane automobile  bird cat deer dog frog horse ship

Fig. 2. Softmax distributions per samples of certain classes (red bars)

The chart (fig. 2) is built the following way:

500 samples randomly picked from the test set
Per-class entropy is calculated for each sample

The results are gathered to the data frame

H W e

Uncertainties grouped by class and averaged

Intuitively, such distributions suggest that the higher entropy within a
class in relation to the other classes, the more model ready to correctly predict
that class. For all classes except airplane, we observe that target class entropy is
much higher than the entropy of other classes within the sample. The other
explanation is that the model distributes the noise among the invalid classes thus
ending up with a correct prediction. Also, the general entropy for non-airplane
outputs is higher for airplane samples. The airplane variance is most often the
second high after the primary class. The model was unable to infer the unseen
class feature set, therefore its softmax output reacts heavily to any data change.
This fact is deeply researched in this publication [3]. Next, we produced the

same calculations using variance uncertainty calculation instead of entropy.
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Fig. 3. Per-class variance for certain classes (red bars)

The per-class variance provides a clearer view of the class confidence by
softmax output change (fig. 3). The small changes are evaluated closer to zero,
which  makes a class more outstanding among the others.

Next, we’ll calculate a single-value constrained uncertainty for a sample.
To achieve that, the softmax should be modelled as a certain distribution.
Among the distributions, the Dirichlet distribution was selected because it has a
straightforward formula to derive a theoretical uncertainty measurement that

falls between 0 and 1. The uncertainty is calculated by the following formula:
1

Y1 +a

Where U is an uncertainty measure, > 1 = N, N is a number of classes, a

UX) =

is a Dirichlet parameter. To get a, we have to derive the distribution from
samples. The Maximum Likelihood Estimation approach was chosen to get the
a parameter. After we have per-sample uncertainty calculated with the formula

above, we could try to get data insight.
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Here are some observations based on the estimator output:
1. The uncertainty varies from 19 to 85 percent.
2. The higher uncertainty usually occurs where the image is dark or a deer
looks like a cat or dog.
3. Most of the time, the antlers make the model confident in its predictions.
4. Model considers surroundings green grass and a silhouette is confidently
predicted as deer.

Intermediate conclusion. We got 3 values for uncertainty - entropy,
variance and single-value uncertainty. For the calculated types of uncertainties,
we received meaningful results and the results are pretty decent in comparison
to the ones produced by existing approaches. We are able to get some intuition
on what those values show and how to use them to analyze flaws in training data
/ training procedure.

Part 2. Uncertainty application for DL model boosting. It is worth
mentioning that there are lots of publications on the uncertainty estimation
itself, but there are no user-friendly frameworks, allowing to apply such kinds of
instruments to the established ML system. Besides, the complete formal solution
to this problem is also missing. Based on the materials found, we will evaluate
its further development and usage in the existing models. While working on the
materials for the paper, we have encountered multiple ways to make use of
uncertainty. However, we will be mostly focused on the Selective Predictor.

Selective predictor. The selective predictor [4] is used when it is critical
to work with the prediction that model is very confident in. It is crucial that the
model would not give the wrong answer. The essential idea of the approach is
that the system should choose if its prediction should be used based on the
certain parameters or otherwise returned "I don’t know" answer for this input. In

our case, such an answer is based on the uncertainty parameter.
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Selective predictor background. A selective predictor is a pair (f, g),
where f is a predictor, and g: X — {0,1} is a selection function, which serves as

a binary qualifier for f as follows,

f(x), ifgx) =1

(8 = {don't know, ifg(x) = 0

Thus, the selective predictor rejects from prediction at a point x if
g(x) = 0. The concepts of coverage and risk are introduced for its evaluation.

Coverage and selective risk. The coverage of a selective predictor
(f, g) is the mean value of the selection function g(x) taken over the underlying
distribution P, ¢ (f,g) = EP [g(x)]. where EP is expected value for initial
dataset distribution P. We calculate the risk of a selective classifier (f, g) as the
average loss on the accepted samples, R(f,g) = EP[L(f(x),y)g(x) lo(f,9)
where [(f(x),y)) is a loss function for the selected task. Basically, the risk of a
selective classifier can be traded-off for coverage. The entire performance
profile of such a classifier can be specified by its risk-coverage(RC) curve,
defined to be risk as a function of coverage.

Selective predictor implementation. Since we are working with the
image classification task, it is obvious that we have chosen a simple
Convolutional Neural Network (CNN) to build a predictor over it. It should be
noted that we didn’t take into account complex models as the main purpose of
the work is to obtain improvements for simple, but promising models based on
neural networks.

We have chosen a medical-type dataset of brain tumor classification task.
So, our task is to predict the category (type) of brain cancer on the basis of MRI
images or choose a category that corresponds to its absence. The dataset is quite
small: ~3000 training images and about ~400 test images. Image resolution is
512x512. 4 categories total. After 12 epochs of training, CNN model evaluated
to 75% accuracy on the validation dataset. The model was frozen and later used
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for tests. Now we can apply the uncertainty estimation techniques over the
trained model. We took two uncertainty measures to work with - softmax
(vanilla) and dirichlet single-value uncertainty. It is worth mentioning that
softmax usage as uncertainty value is technically incorrect. Note, however, that
we are not concerned with the standard probabilistic interpretation (which needs
to be calibrated to quantify probabilities). The softmax values research has
shown that model is probably overfitted. Softmax vectors tend to have values
close to 1 in the predicted class position. The softmax outputs suggest that there

is a problem with the model.

250

200

E 150

100

04 05 06 07 08 09 10
certainty

Fig. 4. A certainty distribution for a subset of data

For the single-value uncertainty, the distribution of the uncertainty (fig. 4)
suggests that the classifier works well. We can see that it varies from
approximately 15 to 90 percent. Estimator does not stick to the same uncertainty
level. Overall, it is noticeable that model is rather not confident (depends on the
threshold of uncertainty).

Expectedly, after selective classifier implementation, we should have get
the increased accuracy over relatively wide coverage. As mentioned earlier, the
main characteristics of the classifier are coverage and risk. We have measured
them and also implemented functions to compute accuracy considering coverage

for the given dataset. We received the following results (fig. 5, 6).
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Fig. 5. Coverage and accuracy charts for Dirichlet-based uncertainty
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Fig. 6. Coverage and accuracy charts for softmax-based uncertainty

Conclusion. Within this work we have applied the uncertainty estimation

theory and implemented uncertainty estimator for the backbox DL model for

image classification task. We have analyzed the output of different uncertainty

estimators and given some intuition on how to interpret those results considering

task and dataset.

In the second part of the work, we have researched ways to apply

uncertainty estimation to improve model accuracy and to give model a

possibility to be used in risk-sensitive areas.

The experiment results have clearly shown that uncertainty estimator

selection is an important subtask for classifier construction. Intuitively, it seems

that the following points should be considered:

1. Model architecture
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2. Dataset content and labelling quality
3. Subject area.

We have confirmed that vanilla uncertainty estimations (raw softmax)
proven to be a good option for certain tasks, despite that practically softmax is
not an uncertainty measure. The monotonic increasing function of accuracy of
threshold shows how solid the result selective predictor would be. The results
suggest that selection of the uncertainty estimation is important. The selected
method is shown rather model and dataset imperfection but did not provide for

selective classifier construction task.
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