International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

Technical sciences
YJIK 004.85, 004.89
Potip Yuliia
Student of the
National Technical University of Ukraine
«lgor Sikorsky Kyiv Polytechnic Institutey
Hotin KOuisa CepriiBaa
CMyoOeHmKa
Hayionanvnozo mexuiunozo ynieepcumemy Yxpainu
«Kuiscvkuii nonimexuiunuu incmumym imeni leopsa Cikopcbko2on
HHorun FOnus Cepreesna
CcmyoeHmKa
Hayuonanvnozo mexnuueckozo ynueepcumema Ykpaumul

«Kuesckuti nonumexnuuecxkuii uncmumym umenu Meopsa Cuxopckozon

Kysliak Serhii

Senior Lecturer

National Technical University of Ukraine

«lgor Sikorsky Kyiv Polytechnic Institutey

Kucasak Cepriit Bosioaumuposu4

cmapuiuti 8UKIA0ay

Hayionanvnui mexniunuu ynisepcumem Yxpainu
«Kuiscvkuti nonimexuiunuu incmumym imeni leopsa Cikopcbkocon
Kucasik Cepreit Biagumuposu4

cmapuiuii npenooasameib

Hayuonanvnoiu mexnuueckuti ynueepcumem Yxpaunoi

«Kuesckuil nonumexnuyeckuti UHcmuniym uUMeHU HZOp}Z CI/IKOPCKOZO»

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9



https://doi.org/10.25313/2520-2057-2020-9
https://doi.org/10.25313/2520-2057-2020-9

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

PROTEIN SEQUENCES CLASSIFICATION BY MACHINE LEARNING
METHODS
KJIACHU®DIKAIIS BUIKOBUX MOCJIJOBHOCTEA METOJAMHU
MAIINHHOTI'O HABYAHHA
KJACCU®UKAILIUA BEJKOBBIX IOCJEIOBATEJBHOCTEM
METOJAMU MAIINHHOI'O OBYYEHUA

Summary. The peculiarity of modern development of computational molecular
biology is the exponential accumulation of biological data, which require detailed
study and analysis. There is a variety of data mining techniques that can be used to
classify biological data, but not all of them provide accurate prediction results and
require special processing of biological sequences. The quality and speed of the
protein classification result depends on the number of sequences presented in each
class, the processing and transformation of these sequences, and the specificity of the
machine learning algorithm. Newest sequencing methods are emerging, increasing
the number of proteins, which leads to the problem of annotation. Big data is a big
expense of computing power, contributing to the latest decisions on the classification
of protein sequences. After all, classified protein is a step towards a narrower
comparison of sequences and the solution of one of the most difficult tasks of
bioinformatics.

Key words: k-nearest-neighbor, logistic regression, decision tree, gradient

boosting, random forest.

Anomauis. Ocobnugicmiwo ~ Cy4acHoeo  poO3BUMKY  OOYUCTIOBANbHOL
MONEKVIAPHOL  0i0n021i € eKcnoHeHyiliHe HAKONUYeHHs OI0N02IYHUX OAHUX, WO
nompebyloms  0emanibHo20 GueueHHsi ma auanizy. IcHye eenuxa KinibKicmb
PIBHOMAHIMHUX MemOoOi8 [HMENeKMYaIbHO20 aHANI3Y OAHUX, WO MOXCYMb Oymu

3acmoco8aui 0as Kiacughixayii 6ion02iuHuUX OaHux, aie He 8Ci 8OHU 0arOMb MOYHUL
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pe3yibmam  NpocHO3y ~ma nompebyromov  0cooausoi  06pobKu - 6i0N02TYHUX
nociioognocmetl. fxicmv ma weuoxkicmes  pesyromamy Kiacugikayii - 0inKie
3anexcams 8i0 KLIbKOCHI NOCAI008HOCMEU NPEeOCMABIEHUX Y KONCHOMY KIAC,
00pobKu i mpancgopmayii yux nociridoeHocmeli ma 8i0 cneyugiku 00paHoco
ancopummy MAWUHHO20 HABYAHHA. Bpaxoeyrouu nosgy HOBIMHIX Memooig
CEKBEeHYBAHHS, 3POCMAE KLIbKICMb OLIKIB, WO Npu3e00ums 00 npobiemu aHomayii.
Benuxi 00’emu  Oanux - genuxi eumpamu  0OUUCTIOBANLHUX NOMYHCHOCHE
KoMn'tomepa, wo 6uma2aioms HOGIMHI piuleHHs wo0o Kiacugikayii OiIKo8uUx
nocnioosnocmeti. Aodaice, Kiacughikoeanuii 00K — ye Kpox 00 OLIbUL 8Y3bKO2O
NOPIGHAHHS NOCAI00BHOCMeEU ma piuleHHsT OOHIEL 3 HAUCKIAOHIWUX 3a0ay
bioinopmamuxu.

Knrouoei cnosa: memoo K-nauibnuosxcuux cycioie, nocicmuuna pezpecis, 0epeso

piuiens, 2padicHmHe NPUCKOpeHHtsl, BUNAOK08I Oepesa.

Annomayusn. OcobeHHOCMbIO COBPEMEHHO20 PA3BUMUSL  BbIYUCIUMENbHOU
MOJEKYIAPHOU OUONO2UU SIBTISIEMCSL IKCNOHEHYUANbHOE HAKONJIEHUEe OUOI0UUEeCKUX
OaHHbIX, KOmopvle mpedylom OemanibHoco uzyyenus u aumamuza. Cywecmeyem
OonbUlOe  KOIUYEeCB8O PA3HOOOPA3HLIX Memo008 UHMENIeKMYAIbHO20 AHAIU3A
OAHHBIX, KOmMopvle Mo2ym Oblmb NPUMeHeHbl 05 Kiaccugurayuu OUoI0cudecKux
OAHHBIX, HO He 8Ce OHU Oalom MOYHbIU pe3yabmam npocHo3a u mpedyom ocobeHHouU
obpabomku  buonocuveckux nociredosamenviocmeui. Kawecmeo u ckopocms
pe3yrbmama Kaaccuguxkayuu benxos 3aeucum om KOAU4ecmasda
noCne008amenbHocmell, NpeoCmasieHHblX 6 KadcOoOM Kidacce, 00pabomku u
mpaucgopmayuu  3MuUx nociedo8amenbHocmell U Om Chneyupuku U3OPAHHBIX
aneoOpuUmMmMo8 MAWUHHO20 00yYeHus. Yuumvlieas NosiéleHue HOBbIX Memo0oo8
CEeKBEHUPOBAHUS, pacmem KOIu4ecmeo Oeikos, umo npusooum K npodieme

anHomayuu. bonvuwue obwemwvr Odanuvix - Ooavuiue 3ampanivbl G6blYUCIUMETIbHbIX

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9



https://doi.org/10.25313/2520-2057-2020-9
https://doi.org/10.25313/2520-2057-2020-9

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

MOwHOCmeU KoMnviomepa, mpedylowue Hoseluwiue pewlenus no Kiaccuguxayuu
benkosvix nociredosamenvrocmet. Beowv, knaccuguyuposannviil 6enox - 9mo wiaz K
bonee Y3KOMY CPABHEHUI0 NOCAe008AMeNbHOCMel U peuleHue O0OHOU U3 CAMbIX
CIOJNCHBIX 3a0ay OUOUHPOPMAMUKU.

Knwuesvie cnoea: ancopumm K-Onudxcaviwux cocedeu, J1o2ucmuyecKkas

pezpeccus, 0epeso peuleHull, 2padueHmuoe YCKopeHue, Ciyyaltble 0epesbsi.

Introduction. Machine learning is gaining popularity in modern science. With
the increasing amount of biological data new methods of analyzing them are
emerging. With the advent of next-generation sequencing methods, the number of
protein sequences is increasing at a high rate. The main unsolved problem of modern
bioinformatics is the lag of the number of annotated proteins in comparison with the
unannounced protein sequences (Fig.1). At the beginning of 2020, the Swiss-Prot
database, that containing validated protein information, retains 561911 manually
annotated sequences. The computer-annotated protein sequence database TrEMBL
contains 177754527 sequences. There are various methods of annotating protein
sequences [1; 2; 3], the main ones being alignment algorithms [4; 5; 6], which do not
allow solving the main problem of bioinformatics.

Classification of protein sequences is a complex task that involves the analysis,
processing and transformation of biological data, using statistical and analytical tools
[7]. As demonstrated by studies [8; 9; 10], various machine learning algorithms can
be used to classify protein sequences, which allow to achieve more than 93%
prediction accuracy. Machine learning models are able to accelerate the process of
annotating biological sequences by identifying a protein class of unknown sequence,
resulting in a narrower range of proteins for further comparison. The point of the
work is to create an optimal binary classification model for three groups of proteins:

oxidoreductase, transferase, and hydrolase, using five machine learning algorithms:
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k-nearest neighbor method, Logistic Regression, Decision Tree, Gradient Boosting,
and Random Forest.

Number of entries in UniProtKB/TrEMBL over time

175.000.000

number of entries

Number of entries in UniProtKB/Swiss-Prot over time

Fig. 1.Number of annotated protein sequences in Swiss-Prot and TrEMBL databases

Materials and Methods. The study used machine learning methods in Python
programming language, using a tool for interactive development and visualization of
projects in the field of data science - Jupyter Notebook.

The k-nearest neighbor method (KNN) is one of the simplest and at the same
time efficient algorithms [11]. By calculating the distances to each amino acid
sequence, the k-nearest neighbors are chosen, to which the distances are shortest and
they are allocated to a separate class.

Logistic Regression (LR) is an algorithm that can be used for binary
classification. The result of Logistic Regression is an estimate of dependent variable
in the range from 0 to 1. The prediction of a protein class occurs by setting a

threshold that indicates the separation between the two classes [12; 13].
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The Decision Tree is an algorithm with a tree structure which main idea is the
recursive selection of attributes - amino acid sequences [14]. At the beginning of the
algorithm, the root is the aggregate dataset, the branch is the rule according to which
the decision was made, and the leaf is the result - the corresponding protein class.

The Gradient Boosting method is a technology that creates a forecast model in
the form of an ensemble of weak models represented as decision trees [15]. By
updating forecasts so that the amount of balances is minimal and predicted values are
close to actual ones, the technology achieves the best results.

The Random Forest method is an ensemble of a large number of decision trees
[16]. Each individual tree generates a class prediction. As a result, the class with the
highest number of votes becomes the model's prediction.

In general, each algorithm has its advantages and disadvantages, which arise
depending on the task and data. It is important to note that a large number of
scientists prefer the support vector machine algorithm (SVM) [17; 18; 19; 20]. The
SVM method has high precision, even with a small amount of data, but it requires
extremely large computing resources. Whereas with large amounts of data, other
algorithms demonstrate learning speed and prediction accuracy [21].

It is advisable to visualize the result of the algorithm using the ROC-curve, and
the quality is estimated as the area under this curve AUC (Area Under ROC Curve)
[22; 23; 24].

There are various indicators that are used to evaluate a classifier model, such
as: "accuracy", “"precision”, "recall", and "fl1 weighted" [25; 26]. These metrics
estimate the accuracy of the model, but are calculated differently. "Accuracy" is
calculated using the indicator function, "precision” and "recall” take into account the
ratio of the number of responses, "f1 weighted"-metric is calculated according to the

values of "precision” and "recall".
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A database of protein sequences was used in computational experiments,
classified according to Enzyme Commission numbers approved by the International
Union of Biochemistry and Molecular Biology, it was obtained from the Research
Collaboratory for Structural Bioinformatics (RCSB) of Protein Data Bank(PDB) [27;
28]. The three largest groups of proteins were selected: oxidoreductase, transferase
and hydrolase. Five models were created for each group. The database of the three
groups of proteins contains 117081 sequences. In the oxidoreductase class are
presented 34321 sequences, in the transferase class are presented 36424 sequences, in

the hydrolase class 46336 sequences are presented (Fig.2).

TRANSFERASE
TET MYDROLASE

Fig. 2. The ratio of the number of sequences in each group

The following libraries were used to process and visualize the data: "Pandas"
(http://pandas.pydata.org/) [29], "NumPy" (https://numpy.org/) [30], "Matplotlib”
(https: //matplotlib.org/) [31]; to transform data and create models "Scikit-learn”
(http://scikit-learn.org/) [32] in Python programming languages.

Results. Five machine learning models were developed for each protein group:
oxidoreductase, transferase, hydrolase, and model accuracy metrics were obtained
(Tables 1-3) and graphs of algorithms in the form of a ROC-curve can be seen in Fig.
3-11.
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Table 1
Algorithm accuracy metrics for the hydrolase classification models

algorithm name fit_time  test_accuracy test_f1_weighted test_precision_macro test_recall_macro test_roc_auc

-

LR 6803939  0.98399 0.98397 0.98394 09826 099830
RandomForest ~ 8291798 097926 0.97923 0.97951 09771 099699
KNN 075713 091446 0.91535 0.91027 09277  0.98094
DecisionTree 557.63519 097658 0.97657 0.97556 09755 097694
GradientBoosting 35470491  0.74514 0.70897 0.83938 06799  0.85859

®test_accuracy ®test f1_weighted ®test_precision_macro * test_recall_macro ®test_roc_auc
1.00

030

0.35

Randomforest DecivionTroe

GradientBoosting

0.30
0.75 : 0976594

070

0.65
LR RandomForest DecisionTree KNN GradientBoosting

Fig. 3. Ratio of ""accuracy”’, "'f1 weighted", "'precision’, "'recall’, "'roc-auc' metrics for
hydrolase classification models

KNN
LR 64% - 007H

RandomForest 7.79%

DecislonTree 52 4%

GradiontBoesting 33 33%

Fig. 4. Ratio of the "*fit time™ metric for hydrolase classification models
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Table 2

Algorithm accuracy metrics for the transferase classification models

algorithm name fit_time test_accuracy test_f1_weighted test_precision_macro test_recall_macro test_roc_auc
LR 7166131 0.98586 0.98583 0.98596 0.98105 0.99820
RandomForest 96.58021 0.97971 0.97963 0.98035 0.97227 0.99565
KNN 0.76972 0.93536 0.83326 0.95399 0.89827 0.97263
DecisionTree 516.12035 0.96980 0.96982 0.96402 0.96577 0.96717
GradientBoosting  354.04959 0.77736 0.73382 0.85925 0.64644 0.84345

®test_accuracy ®test_f1_weighted ®test_precision_macro * test_recall_macro ®test_roc_auc
1.00

095

050

0.85

RandomForest Decisioniree B GradientBoosting

0.80

070

0.65

LR RandomForest DecisionTree KNN GradientBoosting

Fig. 5. Ratio of ""accuracy”’, "'f1 weighted", "'precision’, "'recall’, "'roc-auc' metrics for

transferase classification models

KNN
LRo9% 007

RandomFarest
F29%

DecisionTree
A9.67%

OradientBoosting
40T

Fig. 6. Ratio of the **fit time™ metric for transferase classification models
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Table 3

Algorithm accuracy metrics for the oxidoreductase classification models

algorithm name fit_time test_accuracy test_f1_weighted test_precision_macro test_recall_macro test_roc_auc
A

LR 5443252 099128 099126 09910 098784 099911
RandomForest  60.05371 0.98862 098858 0.9899 098260 099719
DecisionTree 48925117 098492 098495 0.9805 098319 098408
KNN 079592 096043 095964 09707 093443 098255
GradientBoosting 386.10834  0.80160 0.76364 0.8839 066182 086355

®test_accuracy ®test_f1_weighted ®test_precision_macro * test_recall_macro ® test_roc_auc
1.00

0.95

0.90

0.85

Randomiorest DecisionTree GradientBoosting

059128
0.99126
0.80
09910
053754

0999

075

0.70

055
LR RandomForest DecisionTree KNN GradientBoosting

Fig. 7. Ratio of ""accuracy", ""f1 weighted", "*precision', ""recall”’, ""'roc-auc"" metrics for

oxidoreductase classification models

LA 549% KNN 008%
RandomForest 4.06%

DecisionTree 49.39%

GradientBoosbng
18.98%

Fig. 8. Ratio of the "fit time" metric for oxidoreductase classification models
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Note that in (Fig. 9-11) the "x" axis are displayed false positive decisions
(FPR — False Positive Rate), and on the "y" axis are true positive decisions (TPR -

True Positive Rate).

ROC and AUC for LR model (HYDROLASE ROC ano AUC for RandomForest model (KYDROLASE) ROC and AUC for Decmion Tree model (HYDROLASE

~ 1 - 10 ——i
.f' »
n ) .

10 02 14 o6 al, 10 0o 02 04 06 18 10 0o 02 04 06 03 10
PR FPR FPR

ROC and AUC for KNN model (HYDROLASE) ROC and ALC for GradientBoosting model (HYDROLASE

il

Fig. 9. Graphs of the ROC-curve of the algorithms for hydrolase classification models

Figure 9 shows that for the hydrolase classification the best result is
demonstrated by the Logistic Regression and the Random Forest algorithm. The
quantitative interpretation of the ROC-curve is the area under this curve (AUC). AUC
has the highest values for these algorithms. The worst result is demonstrated by the

Gradient Boosting algorithm, for which the area under the curve has the lowest value.
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Fig. 10. Graphs of the ROC-curve of the algorithms for transferase classification models

Figure 10 shows that for transferase classification the best result is
demonstrated by the Logistic Regression and the Random Forest algorithm, for which
the area under the curve (AUC) has the highest values. The worst result is
demonstrated by the Gradient Boosting algorithm, for which the area under the curve

has the lowest value.

OC and AUC Tor LR model (OXIDOREDUCTASE; ROC and AUC for RandemForest modal (OXIDOREDUCTASE | ROC and AUC for DecisionTres model [OXIDOREDUCTASE
1 r- 1
)
£ . b
- : |8
i 14 '
4 on L] 10 0f 02 na 1 f )4 10 0o 02 ns 06 ne
PR FR FPR
ROC and ALIC Sar KNN model (OXIDOREDUCTASE ROC and AUC for GradeniBoostng model (OXIDOREDUCTASE
] - - 1 e r——
|
08 )
06 0
X &
02
L]

Fig. 11. Graphs of the ROC-curve of the algorithms for oxidoreductase classification models
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Figure 11 shows that for the oxidoreductase classification also the best result is
demonstrated by the Logistic Regression and the Random Forest algorithm, the worst

result is demonstrated by Gradient Boosting algorithm.

Discussion. According to the results in Table 1 and Figures 1,2,7 for the
hydrolase classification, it can be seen that according to the “fit time” metric, the k-
nearest neighbors algorithm (KNN) has the lowest value. This algorithm
demonstrates the maximum speed of operation. Other metrics for accuracy of the

algorithm, such as: "accuracy", "precision™, "recall", "f1 weighted"”, "roc-auc", are

calculated as follows [32]:

nsamples_l
accuracy = 1 > Ay =Y,
samples  i=1

where vy is predicted protein class; y; is corresponding true protein class
1(y,=,) is indicator function;

L
TP+FP’

where TP is a number of true positive values; FP — is a number of false

precision =

positives values;

L
TP+FN'

where TP is a number of true positive values; FN is a number of false negative

recall =

values;

_o* precision * recall

f1 weighted — ;
precision + recall

where precision — value of metric "precision™; recall — value of metric "recall";

roc-auc or values AUC =

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9



https://doi.org/10.25313/2520-2057-2020-9
https://doi.org/10.25313/2520-2057-2020-9

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

j TPR(FPR™(x))dx = TTPR(T)FPR‘(T)dT =

x=0

= T T |(T>T)E,(T) f,(T)dT dT =P(X, > X,)

—00 —00

TP FP

where TPR = . FPR = , T is variable threshold; X, is rating
TP+ FN FP+TN

for a positive copy; X,is rating for a negative copy; f,, f, are probability densities;

In contrast to the fast running k-nearest-neighbor algorithm, it can be seen that
Decision Tree and Gradient Boosting algorithms are fitting more than 6 times longer
than all algorithms on the test data. However, these algorithms do not show the best

accuracy values, according to other metrics “accuracy"”,

precision™, "recall”, "fl

weighted" "roc-auc".

Logistic Regression and Random Forest algorithms do not have large fitting
time and have enough high result of accuracy. Note that the Logistic Regression
algorithm operates a little faster and according to the metrics "accuracy", "precision”,
"recall”, "f1 weighted" has a prediction accuracy higher by 0.01 and according to
"roc-auc" - by 0.002 (Table 1).

Similar results of the accuracy of the algorithms can be seen for the transferase
and oxidoreductase classification models (Table 2.3, Figure 3-6, 8, 9). It should be
noted the short fitting time of the k-nearest neighbor algorithm and long fitting time
of the Decision Tree and Gradient Boosting algorithms.

The Logistic Regression algorithm shows the best result of prediction accuracy
and the optimal fitting time of data for classification of individual groups of proteins:
hydrolase, transferase and oxidoreductase in comparison with other algorithms,
Comparing the Logistic Regression algorithm for the classification of hydrolase,
transferase and oxidoreductase, we can see that the fitting time of the algorithm for

the hydrolase classification model is "68.099", for transferase - "71.661", for
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oxidoreductase - "54.432", while the average of all accuracy metrics reach "0.986"
for hydrolase, "0.988" for transferase and "0.992" for oxidoreductase. The
oxidoreductase classification model using the Logistic Regression algorithm is the
most accurate and optimal for fitting time.

Conclusions. Analyzing k-nearest neighbors, Logistic Regression, Random
Forest, Decision Tree and Gradient Boosting machine learning algorithms for the
problem of hydrolase, transferase and oxidoreductase classification, we can make the
following conclusions: the k-nearest-neighbor algorithm has the lowest fitting time;
the Decision Tree algorithm has the highest fitting time; the Gradient Boosting
algorithm has large fitting time and the worst predictive accuracy; Random Forest
algorithm has little fitting time and medium-high prediction accuracy; the Logistic
Regression algorithm has small fitting time and the best accuracy for individual

binary classification models of hydrolase, transferase, and oxidoreductase.
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