International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

Technical sciences
UDC 681.324
Yershov Oleksandr
Student of the
National Technical University of Ukraine
«lIgor Sikorsky Kyiv Polytechnic Institutey
€pmoB Ouexcanap Iroposuu
cmyoenm
Hayionanvnuii mexniunuu ynieepcumem Ykpainu
«Kuiscoxuti nonimexuiunut incmumym imeni I2ops Cikopcbko20»
EpmoB Asnekcanap Uropesuu
cmyoenm
Hayuonanvuoiii mexnuueckutl ynugepcumem Yxpaurol

«Kueeckuu norumexnuyeckuu uncmumym umenu Meopsa Cukopckozon

Kysliak Serhii

Senior Lecturer of the

National Technical University of Ukraine

«lIgor Sikorsky Kyiv Polytechnic Institute»

Kucasik Cepriit Bosiogumuposuy

cmapuiutl UKIA0ay

Hayionanvnut mexniunuu ynisepcumem Yxpainu
«Kuiscokuti nonimexuniunuti incmumym imeri leops Cikopcbko2o»
Kucask Cepreit Biagumuposu4

cmapuuii npenooasamelv

Hayuonanvnoli mexuuyeckuul ynueepcumem Yxpaunl

«Kueeckuu nonumexnuyeckuu uncmumym umenu Meopsa Cukopckozon

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

https://doi.org/10.25313/2520-2057-2020-9
https://doi.org/10.25313/2520-2057-2020-9

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

PROTEIN SEQUENCES CLASSIFICATION BY CONVOLUTION
NEURAL NETWORK
KJACH®IKAIIIS BIIKOBUX MOCJITOBHOCTEM 3A JJOIOMOTI OIO
3rOPTKOBOI HEMPOHHOI MEPEXKI
KJACH®UKAIINUA BEJJKOBBIX ITOCJEIOBATEJBHOCTEM C
MNOMOIIBIO CBEPTOYHON HEMPOHHOM CETHU

Summary. Classification of protein sequences by machine learning methods
requires a lot of time and computing power. The key to successful data
classification for machine learning is choose the best algorithm. Neural networks
are able to study large amounts of data in a short period of time without requiring
significant processing of input information. Convolution Neural Networks (CNN)
are usually used in Computer Vision, but recently they allow you to get good

results for various tasks on Nature Language Processing (NLP).

Key words: classification, deep learning, oxidoreductase, transferase,

hydrolase, convolutional neural network, nature language processing.

Anomauyia. Kuacughikayia 6Oinkosux nocinioosHocmeli Memooamu
MAUUHHO20 HABYAHHA NOMPEOYE BeNUKUX SUMPAM YACY MAd O00UUCTIOBANbHUX
nomyxcHocmeii komn’romepa. Bubip natikpawoeo ancopummy O0as MAUUHHO2O
HABYAHHSL € 3aNOPYKOI0 YCniwHoil kiacugixayii danux. Hetipourni mepesici 30amui
suUBYaAmMU BeIUKI 00 €MU OAHUX 3a KOPOMKUU NPOMIHNCOK 4acy, Npu YbOMy He
nompebyouu 3HayHoi 00poOKU 6XIOHOI IHGopmayii. 320pmKo8i HeUupoHHI
mepeosuci(CNN-Convolution Neural Network) 3azeuuaii euxopucmosyioms 8
Computer Vision, npome 0CMAaHHIM YACOM B0HU O00380JAI0Mb OMPUMAMU He
nocaui pezyiomamu Ol 8UPIWEHHs PI3HUX 3a0ay, WO NO8 A3aHi 3 00POOKOI

mekcmy (NLP-Nature Language Processing).

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

https://doi.org/10.25313/2520-2057-2020-9
https://doi.org/10.25313/2520-2057-2020-9

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

Kniowuosi cnosa: xnacugikayis, enuboke Hasuanus, oxidoreductase,
transferase, hydrolase, 3eopmkoga Heliponna mepedica, Kiacugikayis mexKcmosux

OQHUX.

Annomauusa. Knaccugurayus 6enkosvix nociedosamenbHocmeri Memooamu
MAWUHHO20 00yYeHuss mpebyem OONbUUX 3aMPam 6pemMeHU U GbIUUCIUMETbHBIX
MowHOCmel Komnvlomepa. Beibop nyuwe2o aneopumma 0158 MAUUHHO20 00VYeHUs]
ABNAEMCA 3A71020M YCHewHou Kiaccugukayuu OauHvlx. Hetiponnvie cemu
CNOCOOHbL u3ywamev OobUUe 00beMbl OAHHLIX 304 KOPOMKUUL NPOMENCYMOK
8pemMeHu, npu SMOM He mpedys 3HAYUMENIbHO20 00pabomku 6xoosujel
ungopmayuu. Ceepmounvle neviponunsvie cemu (CNN-Convolution Neural Network)
0oviuno ucnonv3yrom 6 Computer Vision, 0oOHako 6 nocleoHee 6pemsi OHU
NO360JIAIOM NOJYUUMb HEeNnjoxXue pe3yivmamsl OJisl peulenus paziudubix 3a0ad,

Komopuwle ceszanvl ¢ oopabomroii mexcma (NLP-Nature Language Processing).

Knioueevie cnoea: xnraccugukayus, enyooxoe obyuenus, oxidoreductase,
transferase, hydrolase, ceepmounas Hetipounas cems, Klaccugurayus

MeKCmMoBbiX OAHHbIX.

Introduction. Advances in biological and medical technologies have
contributed to the emergence of vast amounts of biological data, such as medical
Images and protein sequences [1]. In the age of big data, the transformation of
biomedical data into valuable knowledge is one of the most important tasks of
bioinformatics [2]. Biological data are often complex, heterogeneous and difficult
to interpret, so they are a good example for deep learning methods [3]. Deep
learning is a new field of machine learning research, the aim of which is to bring
machine learning closer to one of its original goals - artificial intelligence. In

recent years, deep neural networks as machine learning tools have become

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

https://doi.org/10.25313/2520-2057-2020-9
https://doi.org/10.25313/2520-2057-2020-9

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

increasingly popular. The availability of large computing resources, large amounts
of data, new algorithms for learning deep models and easy-to-use libraries for
learning neural networks are the drivers of development in this area [4].

The constant increase in biological information in all biomedical fields
underscores the potential for an even greater role that deep learning can play in
future research. The presence of a large amount of data requires the improvement
of standard methods of bioinformatics, which can be used for the annotation of
proteins, analysis of gene expression, identification of protein families, and others.

Convolution Neural Networks are neural networks that used mainly for
computer image classification, but studies [6,7,8] have shown that this deep
learning algorithm is able to demonstrate extremely accurate prediction for NLP
tasks - classification of text data.

Neural networks are able to solve such a problem as binary classification of
protein sequences. According to [9; 10], neural networks can simultaneously
classify a large number of classes, which indicates the flexibility and versatility of
neural networks for a large number of tasks. However, it should be noted that
neural networks are characterized by the problem of "overfitting”, which leads to
"learning” of training data by the network and does not allow to obtain accurate
forecast results on real data.

Thus, by creating a convolutional neural network architecture to classify
three groups of protein sequences: oxidoreductase, transferase and hydrolase,
regulating different components of the neural network, with the addition of tools
that prevent "overfitting”, we obtain an optimal convolutional neural network
model that can classify unlimited protein classes quickly and efficiently.

In the learning process, the indicators are interpreted in modern visualization
using a graph of data movement, which allows you to control the work and

understand the movement of data within the network.

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

https://doi.org/10.25313/2520-2057-2020-9
https://doi.org/10.25313/2520-2057-2020-9

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

Materials and Methods. In this study, the convolutional neural network
architecture was built in the Python programming language, using the Google
Colaboratory (Colab) service with access to a graphics processor (GPU) and an
open Tensorflow platform for machine and deep learning. The text input data of
the neural network was subjected to the method of tokenization - the
transformation of a text sequence into a vector sequence of integers [11].

The convolutional neural network has an architecture (Fig.1):

- embedding layer, which is initialized by random scales and studies the
embedding - the position of the word in the vector space, for all words in the
training data set [12]. This layer adapts the model to a specific dataset.

- convolutional layers, which are the main building block of CNN. The
parameters of the layer consist of a set of filters for training [13]. During the direct
pass, each filter performs a convolution of the input dimension, calculating the
scalar product of the filter and input data, and forming an excitation map of this
filter. As a result, the network learns to activate filters when it detects a specific
type of feature in a specific spatial position at the input.

- max-pooling layer, the function of which is to gradually reduce the
spatial dimensions of the representation to reduce the number of parameters and
calculations in the network, and hence to control the dataset. The maximization
aggregation layer works independently on each fragment of the input depth and
changes it spatially, using the operation "MAX" (selection of the maximum value)
[14].

- flatten layer, on which the result obtained on the previous layers is
aligned in the combined map, presented in the form of a column, for presentation
in the next layer [15].

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

https://doi.org/10.25313/2520-2057-2020-9
https://doi.org/10.25313/2520-2057-2020-9

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

- fully-connected or dense layers, which are divided into a first fully-
connected layer and a fully-connected output layer [16]. The first of them takes the
input data of the performance analysis and uses the scales to predict the correct

class. The second calculates the finite probabilities for each class.

Convolution

Fully-Connected
Embbeding layer Max-Pooling Y °

layars

e layes Flatten
layer RELU SOFTMAX
- .\ /,@ Class
Input B : =] .ﬂ 7@ . Output
- - ‘--“‘--oe} D~ @ =>
o - =] c
l > e
= J ‘e
i! B

connscied

o

g

85

& 25
g=

k &

)

Fig. 1. Convolutional neural network architecture for protein sequence classification

By
)

It is necessary to indicate the stages of CNN training:

1. Initialization of initial weights for all neurons;

2. "Forward propagation™ - moving the entire training dataset on the
neural network and get the result;

3. The loss function captures the difference between the correct
classification result and the actual output of the model, taking into account the
current weight of the model, thereby indicating how close the model from the
correct result [17]; 4. "Backpropagation” - to minimize the error function [18];

4. Weight update - weight change according to the backpropagation;

5. Iteration to convergence - the number of iterations required for
convergence.

The fully-connected layers of CNN go through their own "backpropagation™
process to determine the most accurate weights. The "backpropagation™ algorithm

performs a highly efficient search for optimal weight values using the gradient

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

https://doi.org/10.25313/2520-2057-2020-9
https://doi.org/10.25313/2520-2057-2020-9

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

descent technique [19]. This allows you to minimize error functions with low
computing resources and create a conclusion - the decision on classification.

For this problem of classification of three groups of proteins, categorical
cross entropy was used as a function of error [20]. This cost function is intended to
classify only one label, ie provided that there is only one class for one protein
sequence.

In order to improve the learning process of the neural network and avoid the
problem of overfitting, regularization methods such as "Dropout" and "Early
Stopping"” were used for some models [21; 22]. The first method uses a technique
where randomly selected neurons are ignored during training. They "drop-out”
randomly. This means that their contribution to the activation of descending
neurons is temporarily removed for the period of forward propagation and any
weight updates are not applied to the neuron in the backpropagation. Accordingly,
neurons will randomly "fall out™ of the network during training, and other neurons
will have to process the information needed to predict missing neurons. It is
believed that this leads to the network learning a lot of independent internal
representations. As a result, the network becomes less sensitive to the specific
weights of neurons, which leads to better generalization and less chance of
overfitting training data.

The "Early Stopping" method is based on the early cessation of neural
network learning due to the cessation of efficiency gains. As an indicator of
efficiency in this case, the error function was used, which should be minimized.
Therefore, if the error function begins to increase rather than decrease as needed,
then this method stops the learning process.

Metrics such as: "precision”, "recall”, "fl-score” were used to assess the
accuracy of the forecast of each class. To assess the quality of the model as a

whole - "accuracy" - the ratio of correctly predicted observations to total

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

https://doi.org/10.25313/2520-2057-2020-9
https://doi.org/10.25313/2520-2057-2020-9

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

observations, "precision” - is the ratio of correctly predicted positive observations
to total predicted positive observations, "recall" - the ratio of correctly predicted
positive observations to all observations in the actual class, "fl-score” - the
weighted average of the metrics "precision™ and "recall".

Biological data for network training and testing were obtained from the
Structural Bioinformatics Research Laboratory (RCSB) of the Protein Data Bank
(PDB).

The following libraries were used for data processing and visualization:
"Pandas" (http://pandas.pydata.org/) [23], "NumPy" (https://numpy.org/) [24],

"Matplotlib™ (https://matplotlib.org/) [25]; to create the architecture of the neural
network "Keras" [https://keras.io/) [26]; to visualize the operation of the neural
network "Tensorflow" (https://www.tensorflow.org/) [27] in Python programming
language.

Results. Three models of the convolutional neural network were created,
among which the architecture was compared and the optimal one was selected. The
architecture of the first CNN model was used as a basis for creating others. To
obtain the optimal model, should be determined experimentally the depth of the
network and using regularization methods.

The first model contains an embedding layer, two convolution layers,
followed by a max-pooling layer, a flatten layer, and two fully-connection layers.
The training of this model took place in 15 predetermined epochs (Fig. 2). With
each epoch, the accuracy of the forecast increases (Fig. 3), and the error function is
minimized (Fig. 4). The accuracy of the prediction and the value of the error
function after 15 epochs on the training and test data is shown in Fig. 5. The values
of forecast accuracy metrics for each class are obtained (Fig. 6). In the process of

learning the first model of CNN, regularization methods were not used.

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

https://doi.org/10.25313/2520-2057-2020-9
https://doi.org/10.25313/2520-2057-2020-9
http://pandas.pydata.org/
https://numpy.org/

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2020-9

densa_1

flatten_t

|

(e
mmlq-i |

\v'xu,;n;nq'
comrllcrLl |

|
ombedding... |

Fig. 2. Graph of data transfer during training of the first CNN model

Accuracy

roch

Fig. 3. Graph the increasing accuracy with each training epoch for the first CNN model

Loss

Epocn

Fig. 4. Graph the minimization of the error function with each training epoch for the first
CNN model

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

https://doi.org/10.25313/2520-2057-2020-9
https://doi.org/10.25313/2520-2057-2020-9

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

Epoch 15/15
93664/93664 [====] - 645 684us/step - loss: ©.0370 - acc: @.9896 - val loss: ©.1962 - val acc: 0.9664

Fig. 5. Accuracy values and error functions after the 15th training era for the first CNN

model
precision recall fl-score support
HYDROLASE 8.97 0.97 8.87 9283
OXIDOREDUCTASE 8.57 2.97 8.57 6921
TRANSFERASE 2.96 2.95 2.96 7233

Fig. 6. The values of the accuracy metrics of each class for the first CNN model

The second model contains an embedding layer, three convolution layers,
followed by max-pooling layer, an flatten layer and two fully-connection layers
(Fig. 7). This model was trained using the "Early Stopping"” method, which is why
a large number of epochs were previously set. With each epoch, the accuracy of
the forecast increases (Fig.8), and the error function is minimized (Fig.9). The
early stop worked after the 19th era. The accuracy of the forecast and the value of
the error function after 19 epochs in the training and test data are shown in Fig. 10.

The values of forecast accuracy metrics for each class are obtained (Fig.11).

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

https://doi.org/10.25313/2520-2057-2020-9
https://doi.org/10.25313/2520-2057-2020-9

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2020-9

metrics ey foss

dense_)

flatien 1
|
|

| mas_posiingt

[convig3 !

(| ooavid2 |
i

| ecomird

| @mbeddng

Fig. 7. Graph of data transfer during training of the second CNN model

Fig. 8. Graph the increasing accuracy with each training epoch for the second CNN model

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

https://doi.org/10.25313/2520-2057-2020-9
https://doi.org/10.25313/2520-2057-2020-9

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

LOSS

Fig. 9. Graph the minimization of the error function with each training epoch for the
second CNN model
Epoch 19/10600
93664/93664 [====] - 82s 874us/step - loss: ©.0226 - acc: ©.9938 - val loss: 8.1673 - val acc: ©.9669

Fig. 10. Accuracy values and error functions after the 19th training era for the second CNN

model
precision recall fl-score support
HYDROLASE 0.97 e.97 e.97 9180
CXIDOREDUCTASE .97 8.97 .97 6917
TRANSFERASE 8.96 ©.96 9.96 7320

Fig. 11. The values of the accuracy metrics of each class for the second CNN model

The third model contains an embedding layer, three convolution layers,
followed by max-pooling layer, a flatten layer and two fully-connection layers
(Fig.12). This model was trained using the "Early Stopping" method and the
"Dropout™ method, which was added twice: between the max-pooling layer and the
flatten layer, between the first fully-connection layer and the output fully-
connection layers. The "Dropout™ method was set to "0.25" - which means the
exclusion of 25% of neurons. Due to the use of regularization methods, a large
number of epochs have been set beforehand. With each epoch, the accuracy of the
forecast increases (Fig.13), and the error function is minimized (Fig.14). The early

stop worked after 31 epochs. The accuracy of the forecast and the value of the

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

https://doi.org/10.25313/2520-2057-2020-9
https://doi.org/10.25313/2520-2057-2020-9

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2020-9

error function after 31 epochs on the training and test data are shown in Fig.15.

The values of forecast accuracy metrics for each class are obtained (Fig.16).

Epoch

Fig. 13. Graph the increasing accuracy with each training epoch for the third CNN model

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

https://doi.org/10.25313/2520-2057-2020-9
https://doi.org/10.25313/2520-2057-2020-9

International Scientific Journal “Internauka” https://doi.org/10.25313/2520-2057-2020-9

LOSS

Fig. 14. Graph the minimization of the error function with each training epoch for
the third CNN model

Epoch 31/106¢0
93664/93664 [====] 87s 927us/step loss: ©.0817 acc: 0.9702 val loss: ©.1101 val_acc: 0.9703

Fig. 15. Accuracy values and error functions after the 31th training era for the third

CNN model
precision recall fl-score support
HYDROLASE 8.97 8.97 8.97 8119
OXIDOREDUCTASE 8.98 0.98 8.98 6913
TRANSFERASE 8.97 ©.96 8.97 7394

Fig. 16. The values of the accuracy metrics of each class for the third CNN model

Discussion. According to the metrics of accuracy "precision”, "recall”, "f1-

score" from Fig.6,11,16, calculated for each class as follows:

iciny — TP
precision =_"— [28],

where TP is a number of true positive values; FP — is a number of false positives

values;

recall =—"__ [28],
TP+ FN

where TP is a number of true positive values; FN is a number of false negative

values;

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

https://doi.org/10.25313/2520-2057-2020-9
https://doi.org/10.25313/2520-2057-2020-9

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

f1-score = 2% precision*recall) [29],

precision + recall

where precision — value of metric "precision”; recall — value of metric
"recall";
it can be argued that all three networks classify hydrolase with an accuracy of 97%.
The first and second neural network models also classify oxidoreductase with an
accuracy of 97%, however, the third CNN model classifies this group with an
accuracy of 98%. According to the metrics "precision" and "f1-score", the first and
second network models classify transferase with an accuracy of 96%, the third -
with an accuracy of 97%. According to the "recall” metric, the first network model
classifies transferase with an accuracy of 95%, the second and third - with an
accuracy of 96%.

The overall accuracy for the first CNN on the test data is 96.64%, the second
- 96.69%, the third - 97.03% (Fig.5,10,15)

The error function, in the form of a categorical cross entropy, calculated by

the formula:
CE= —%Z yilog(y’) [29]

where y*;—result of the last layer with softmax, forecast; y; is the true value;

indicates the effectiveness of training (Fig. 4,9,14). For the first CNN on the
test data takes the value of 0.1962, for the second - 0.1673 and for the third -
0.1101.

According to Fig.2,7,12 you can see that the training time of the first
network is 15 minutes, the second - 25 minutes, the third - 43 minutes.

Conclusions. After analyzing the three architectures of the convolutional
neural network, the following conclusions can be made: the first model of CNN
training the fastest, however, quality indicators indicate low accuracy of

classification of transferase compared to other architectures. The second CNN

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

https://doi.org/10.25313/2520-2057-2020-9
https://doi.org/10.25313/2520-2057-2020-9

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

model has better accuracy, but compared to the third architecture, it is clear that the
latter has the best accuracy and the lowest values of the loss function, which is a
very important indicator of training. Given the architecture of each CNN and the
quality results obtained, it can be argued that regularization methods played an
important role in the learning process. Since the first model did not have any
method, the second model had one method of regularization - "Early Stopping",
and the third - two methods of regularization "Early Stopping” and "Dropout”,
which significantly affected the training.

It has become possible to increase the depth of the neural network, which
means that the network better understands the data and searches for complex
relationships, avoiding the problem of overfitting.

The best convolutional neural network is the third model, which contains an
embedded layer, three convolution layers, a max-pooling layer, a flatten layer, and
two fully-connected layers. This CNN was trained using the "Early Stopping"
method and the "Dropout™ method, which was added twice. CNN has an overall
accuracy of 97.03% on test data, the cost value reaches 0.1101. The network
classifies hydrolase, oxidoreductase and transferase with 97%, 98% and 96.6%

accuracy, respectively.

References

1. Cao C, Liu F, Tan H, Song D, Shu W, Li W et al. Deep Learning and Its
Applications in Biomedicine. Genomics, Proteomics & Bioinformatics.
2018;16(1):17-32.

2. Min S, Lee B, Yoon S. Deep learning in bioinformatics. Briefings in
Bioinformatics. 2016;:bbw068.

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

https://doi.org/10.25313/2520-2057-2020-9
https://doi.org/10.25313/2520-2057-2020-9

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

3.

10.

11.

Fioravanti D, Giarratano Y, Maggio V, Agostinelli C, Chierici M, Jurman G
et al. Phylogenetic convolutional neural networks in metagenomics. BMC
Bioinformatics. 2018;19(S2).

Jurtz V, Johansen A, Nielsen M, Almagro Armenteros J, Nielsen H,
Senderby C et al. An introduction to deep learning on biological sequence
data: examples and solutions. Bioinformatics. 2017;33(22):3685-3690.
Ching T, Himmelstein D, Beaulieu-Jones B, Kalinin A, Do B, Way G et al.
Opportunities and obstacles for deep learning in biology and medicine.
Journal of The Royal Society Interface. 2018;15(141):20170387.

Zheng D, Pang G, Liu B, Chen L, Yang J. Learning transferable deep
convolutional neural networks for the classification of bacterial virulence
factors. Bioinformatics. 2020.

Taju S, Nguyen T, Le N, Kusuma R, Ou Y. DeepEfflux: a 2D convolutional
neural network model for identifying families of efflux proteins in
transporters. Bioinformatics. 2018;34(18):3111-3117.

Budach S, Marsico A. pysster: classification of biological sequences by
learning sequence and structure motifs with convolutional neural networks.
Bioinformatics. 2018;34(17):3035-3037.

Hanson J, Paliwal K, Litfin T, Yang Y, Zhou Y. Accurate prediction of
protein contact maps by coupling residual two-dimensional bidirectional
long short-term memory with convolutional neural networks.
Bioinformatics. 2018;34(23):4039-4045.

Szalkai B, Grolmusz V. SECLAF: a webserver and deep neural network
design tool for hierarchical biological sequence classification.
Bioinformatics. 2018;34(14):2487-2489.

Giorgi J, Bader G. Transfer learning for biomedical named entity recognition
with neural networks. Bioinformatics. 2018;34(23):4087-4094.

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

https://doi.org/10.25313/2520-2057-2020-9
https://doi.org/10.25313/2520-2057-2020-9

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

12. Bazzan A, Engel P, Schroeder L, da Silva S. Automated annotation of
keywords for proteins related to mycoplasmataceae using machine learning
techniques. Bioinformatics. 2002;18(Suppl 2):S35-S43.

13. Luo X, Tu X, Ding Y, Gao G, Deng M. Expectation pooling: an effective
and interpretable pooling method for predicting DNA-—protein binding.
Bioinformatics. 2019;36(5):1405-1412.

14. Kang Q, Meng J, Cui J, Luan Y, Chen M. PmliPred: a method based on
hybrid model and fuzzy decision for plant miRNA-IncRNA interaction
prediction. Bioinformatics. 2020;36(10):2986-2992.

15. Min X, Zeng W, Chen N, Chen T, Jiang R. Chromatin accessibility
prediction via convolutional long short-term memory networks with k-mer
embedding. Bioinformatics. 2017;33(14):192-i101.

16. Kang Q, Meng J, Cui J, Luan Y, Chen M. PmliPred: a method based on
hybrid model and fuzzy decision for plant miRNA-IncCRNA interaction
prediction. Bioinformatics. 2020;36(10):2986-2992.

17. Pagel K, Pejaver V, Lin G, Nam H, Mort M, Cooper D et al. When loss-of-
function is loss of function: assessing mutational signatures and impact of
loss-of-function genetic variants. Bioinformatics. 2017;33(14):1389-i398.

18. Parca L, Ariano B, Cabibbo A, Paoletti M, Tamburrini A, Palmeri A et al.
Kinome-wide identification of phosphorylation networks in eukaryotic
proteomes. Bioinformatics. 2018;35(3):372-379.

19. Zhang W, Ma J, ldeker T. Classifying tumors by supervised network
propagation. Bioinformatics. 2018;34(13):i484-1493.

20. Strodthoff N, Wagner P, Wenzel M, Samek W. UDSMProt: universal deep
sequence models for protein classification. Bioinformatics. 2020;36(8):2401-
24009.

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

https://doi.org/10.25313/2520-2057-2020-9
https://doi.org/10.25313/2520-2057-2020-9

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

21.

22,

23.

24,

25,

26.

217,

28.

29.

Adhikari B. DEEPCON: protein contact prediction using dilated
convolutional ~ neural networks with dropout. Bioinformatics.
2019;36(2):470-4717.

Fu W, Dougherty E, Mallick B, Carroll R. How many samples are needed to
build a classifier: a general sequential approach. Bioinformatics.
2004;21(1):63-70.

Abdennur N, Mirny L. Cooler: scalable storage for Hi-C data and other
genomically labeled arrays. Bioinformatics. 2019;36(1):311-316.

Yin P, Voight B. MeRP: a high-throughput pipeline for Mendelian
randomization analysis. Bioinformatics. 2014;31(6):957-959.

Tareen A, Kinney J. Logomaker: beautiful sequence logos in Python.
Bioinformatics. 2019;36(7):2272-2274.

Kalkatawi M, Magana-Mora A, Jankovic B, Bajic V. DeepGSR: an
optimized deep-learning structure for the recognition of genomic signals and
regions. Bioinformatics. 2018;35(7):1125-1132.

Pages G, Charmettant B, Grudinin S. Protein model quality assessment using
3D oriented convolutional neural networks. Bioinformatics.
2019;35(18):3313-33109.

Ji Y, Yu C, Zhang H. contamDE-Im: linear model-based differential gene
expression analysis using next-generation RNA-seq data from contaminated
tumor samples. Bioinformatics. 2020;36(8):2492-2499.

Xing H, Kembel S, Makarenkov V. Transfer index, NetUniFrac and some
useful shortest path-based distances for community analysis in sequence
similarity networks. Bioinformatics. 2020;36(9):2740-2749.

International Scientific Journal “Internauka’ https://doi.org/10.25313/2520-2057-2020-9

https://doi.org/10.25313/2520-2057-2020-9
https://doi.org/10.25313/2520-2057-2020-9

