Tint Reuven

Number Theorist, Israel

TO THE HYPOTHESIS OF BILL (ELEMENTARY ASPECT)

Summary. Some equations and equal equations are given. To the hypothesis of Bill.

Key words: equations, equations, Beal's conjecture

1.

1)
$$3^2$$
. 3^2+3^2 . $2^4=3^2$. 5^2 2) 3^2 . 5^2+3^4 . $2^4=3^2$. 13^2 3) 3^4 . 5^2+3^2 . $2^6=3^2$. 17^2
4) 3^4 . 7^2+3^6 . $2^6=3^4$. 5^4 5) 5^2 . 3^4++5^4 . $2^6=5^2$. 41^2 6) 5^2 . 3^2+5^2 . $2^4=5^4$ 7) 5^4 . 3^2+5^2 . $2^6=5^2$. 17^2

1)
$$9^2 + 12^2 = 15^2$$
 2) $15^2 + 36^2 = 39^2$ 3) $45^2 + 24^2 = 51^2$ 4) $63^2 + 216^2 = 225^2$
5) $45^2 + 200^2 = 205^2$ 6) $15^2 + 20^2 = 25^2$ 7) $75^2 + 40^2 = 85^2$

- 2. We show that equalities with this property are innumerable (without using the previous equalities, since the use of: multiplication of equalities by the corresponding prime numbers in an arbitrary even degree is trivial). Examples: $(13p^9)^2 + (7p^6)^3 = (2p^2)^9$, $(2p^6)^7 + (17p^{14})^3 = (71p^{21})^2$ etc., (when the base is known), $2 \cdot 3^2 = 18$ least common multiple, $7 \cdot 3 \cdot 2 = 42$ least common multiple, the least common multiple, p is an arbitrary prime (or other) number.
 - 2.1 Basics of the following equalities:

$$7^2+2^5=3^4$$
, $3^5+10^2=7^3$, $3^5+11^4=122^2$: 2^4 . 7^2+2^3 . $2^6=2^4$. 3^4 $28^2+8^3=6^4$, $2.2\ 3^5+2^3$. $5^2=2$. 7^3 , $2.\ 3^5+2$. $11^4=2^3$. 61^2 , etc. etc.

3. We have an equation $(A, p^b)^a + (B, p^a)^b = p$, $p^{ab} = p^{ab+1}$ (1), if $A^a + B^b = p$ (2), when A = 2, B - arbitrary odd primes, a,b- arbitrary positive integers such that p is a prime number.

Example: A=2. B=3, a=5, b=4. $(2. 113^4)^5+(3. 113^5)^4=113^{21}$, $(2. 5^4)^5+(3. 5^5)^4=113. 5^{20}$.

- 3.1 If $A=2p_1$, when p_1 arbitrary prime number not equal B, then the basis for example $(2.3)^3+7^4=2617$ prime number, and $(2.3^5)^3+(7.3^3)^4=2617$. In general: $(2p_1^{b+1})^a+(Bp_1^a)^b=pp_1^{ab}$ (3).
- 4. It seems that (2) and (3) have countless solutions.

References

Tint R. The proof of Bill's conjecture is a consequence of the properties of invariant identity certain type (elementary aspect) // International Scientific Journal. Kiev, 2016. N11 (21). Vol. 1. https://doi.org/10.21267/IN.2016.3571