Технические науки

УДК 539.3

Вовченко Николай Григорьевич

кандидат технических наук, доцент,

доцент кафедры строительной механики и сопротивления материалов

Приднепровская Государственная академия

строительства и архитектуры

Vovchenko Nikolay

PhD in Civil Engineering, Associate Professor Prydniprovsky State Academy of Civil Engineering and Architecture

Варяничко Марина Александровна

кандидат технических наук, доцент,

доцент кафедры строительной механики и сопротивления материалов

Приднепровская Государственная академия

строительства и архитектуры

Varianichko Marina

PhD in Civil Engineering, Associate Professor Prydniprovsky State Academy of Civil Engineering and Architecture

Нагорный Дмитрий Валериевич

кандидат технических наук, доцент,

доцент кафедры строительной механики и сопротивления материалов

Приднепровская Государственная академия

строительства и архитектуры

Nagorny Dmytro

PhD in Civil Engineering, Associate Professor Prydniprovsky State Academy of Civil Engineering and Architecture

НДС ПЛАСТИН НА ОСНОВЕ НЕКЛАССИЧЕСКОЙ ИТЕРАЦИОННОЙ ТЕОРИИ ПРИ ПОПЕРЕЧНОМ НАГРУЖЕНИИ THE INVESTIGATION OF THE STRESS-STRAIN STATE OF THE PLATES AT THE LATERAL LOADING USING NONCLASSICAL ITERATION THEORY

Аннотация. Построено решение задачи об изгибе пластины под действием локальной нагрузки на основе итерационной теории, учитывающей все компоненты напряженно-деформированного состояния.

Ключевые слова: пластина, напряженно-деформированное состояние, локальная нагрузка.

Summary. The solution of the problem of the bending of a plate under the action of a local load is constructed on the basis of an iterative theory that takes into account all the components of the stress-strain state.

Key words: plate, stress-strain state, local loadticity.

В настоящей работе при решении задачи использовались уравнения уточнённой теории [1], учитывающей поперечные деформации сдвига, нелинейный закон изменения напряжений по толщине. Зависимости между деформациями и перемещениями для трансверсально-изотропной пластины принимались в соответствии с известными соотношениями Коши.

Для получения основных соотношений, уравнений и условий на контуре использовалось вариационное уравнение Рейсснера.

$$\iiint \left\langle \sigma_{x} \delta \left(\frac{\partial u}{\partial x} \right) + \sigma_{y} \delta \left(\frac{\partial v}{\partial y} \right) + \sigma_{z} \delta \frac{\partial w}{\partial z} + \sigma_{xy} \delta \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) + \sigma_{xz} \delta \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right) + \sigma_{yz} \delta \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right) + \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} - \frac{\sigma_{xz}}{G_{3}} \right) + \delta \sigma_{xz} + \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} - \frac{\sigma_{yz}}{G_{3}} \right) \delta \sigma_{yz} + \left\{ \frac{\partial w}{\partial z} - \frac{1}{E_{3}} \left[\sigma_{z} - v_{3} \left(\sigma_{x} + \sigma_{y} \right) \right] \right\} \delta \sigma_{z} \left\langle dx dy dz - \int \int (X \delta u + Y \delta v + Z \delta w) dF = 0. \tag{1}$$

В (1) X,Y,Z – составляющие поверхностных сил, F -площадь лицевых и боковых поверхностей пластины.

В [1] компоненты напряжений σ_{xz} , σ_{yz} , σ_z и компоненты перемещений u, v, w принимались в виде рядов. Использовался метод разложений по толщинной координате с применением полиномов Лежандра.

$$u = P_1 u_1(x, y) + P_3 u_3(x, y)(u \to v), \quad w = P_0 w_1(x, y) + P_2 w_3(x, y),$$

$$\sigma_{xz} = (P_0 - P_2)Q_{1x}(x, y)/h + 3(P_2 - P_4) Q_{3x}(x, y)/(7h), \quad (x \to y)$$

$$\sigma_z = (3P_1/5 - P_3/10)q(x, y) + 3(P_1/35 - 2P_3/45 + P_5/63)\omega_3(x, y)/2,$$
(2)

где $P_i(2z/h)$ - полиномы Лежандра, h-толщина пластины, q(x,y)-поперечная нагрузка.

Функции $\omega_3(x,y)$, Q_{ix} , Q_{iy} (i = 1,3) и все компоненты напряжений выражаются согласно [2] через перемещения $u_i(x,y)$, $v_i(x,y)$, $w_i(x,y)$, (i = 1,3). Напряжения σ_{xz} , σ_{yz} , σ_z удовлетворяют условиям на лицевых плоскостях пластины при z = ±0,5h: σ_z = ±0,5q(x, y), σ_x = σ_y = 0.

Все компоненты напряжений выражаются через перемещения [2].

Из вариационного уравнения (1) система уравнений равновесия пластин в перемещениях записывается в виде

$$A_1 u_1 - A_2 \frac{\partial \varphi_1}{\partial x} + A_3 \frac{\partial \varphi_3}{\partial x} - \frac{Gh}{3} \frac{\partial \varphi_1}{\partial y} + A_4 u_3 + A_5 \frac{\partial w_1}{\partial x} - A_6 \frac{\partial w_3}{\partial x} + A_7 \frac{\partial q}{\partial x} = 0, \tag{3}$$

$$A_8u_1 + A_9 \frac{\partial \varphi_1}{\partial x} - A_{10} \frac{\partial \varphi_3}{\partial x} - \frac{Gh}{7} \frac{\partial \varphi_3}{\partial y} + A_{11}u_3 + A_{12} \frac{\partial w_1}{\partial x} + A_{13} \frac{\partial w_3}{\partial x} + A_{14} \frac{\partial q}{\partial x} = 0, \qquad (4)$$

$$(x \rightarrow y, y \rightarrow x, u_1 \rightarrow v_1, \phi_3 \rightarrow -\phi_3);$$

$$A_{15}\varphi_1 + A_{16}\varphi_3 + A_{17}\nabla^2 w_1 - A_{18}\nabla^2 w_3 + q = 0; (5)$$

$$A_{19}\varphi_1 + A_{20}\varphi_3 - A_{21}\nabla^2 w_1 - A_{22}w_3 + A_{23}\nabla^2 w_3 + A_{24}q = 0.$$
 (6)

Здесь

$$\phi_{i} = \frac{\partial u_{i}}{\partial y} - \frac{\partial v_{i}}{\partial x}, \quad \phi_{i} = \frac{\partial u_{i}}{\partial x} + \frac{\partial v_{i}}{\partial y}, \quad (i = 1,3)$$

$$E_{0} = \frac{E}{1 - v^{2}}, \quad D_{1} = \frac{Ev_{3}}{E_{2}(1 - v)}, \quad D_{2} = \frac{1}{E_{2}}(1 - 2v_{3}D_{1}), \quad A_{1} = \frac{56G_{3}}{15h}, \quad A_{2} = \frac{E_{0}h}{3} + \frac{11D_{1}^{2}h}{70D_{2}},$$

$$A_4 = A_8 = \frac{2A_{12}}{h} = \frac{2A_{16}}{h} = \frac{12G_3}{5h}, \quad A_5 = A_{15} = \frac{28G_3}{15}, \quad A_6 = -A_{19} = \frac{2G_3}{15} + \frac{33D_1}{35D_2}, \quad A_7 = -\frac{2D_1h}{21},$$

$$A_7 = -\frac{2D_1h}{21}, \quad A_{12} = A_{16} = \frac{6G_3}{5}, \quad A_{10} = \frac{E_0h}{7} + \frac{22D_1^2h}{315D_2}, \quad A_{12} = A_{16} = \frac{6G_3}{5}, \quad A_3 = A_9 = \frac{11D_1^2h}{105D_2}, \quad A_{11} = \frac{72G_3}{5h},$$

$$A_{14} = -\frac{D_1h}{18},$$

$$A_{13} = A_{20} = \frac{6G_3}{5} + \frac{22D_1}{35D_2}, \quad A_{17} = \frac{14B_1}{15}, \quad A_{18} = A_{21} = \frac{B_1}{5}, \quad A_{22} = \frac{198}{35D_2h}, \quad A_{23} = \frac{2B_1}{15}, \\ A_{24} = \frac{3}{7}, \\ B_1 = G_3h \,.$$

Условия на контуре могут быть получены из (1).

$$\int \left[\left(\frac{2}{h} M_{1n} - M_{1n}^{0} \right) \delta u_{1n} + \left(\frac{2}{h} M_{1s} - M_{1s}^{0} \right) \delta u_{1s} + \left(M_{3n} - M_{3n}^{0} \right) \delta u_{3n} + \left(M_{3s} - M_{3s}^{0} \right) \delta u_{3s} + \left(Q_{1n} - Q_{1n}^{0} \right) \delta w_{1} + \left(M_{3n} - M_{3n}^{0} \right) \delta u_{3s} + \left(M_{3s} - M_{3s}^{0} \right) \delta u_{3s} + \left(Q_{1n} - Q_{1n}^{0} \right) \delta w_{1} + \left(\frac{3}{35} Q_{3n} - \frac{1}{5} Q_{1n} - Q_{3n}^{0} \right) \delta w_{3} \right] ds = 0,$$

где

$$\begin{split} M_{jn} &= \int \sigma_n P_j \left(\frac{2z}{h}\right) dz, \quad M_{js} = \int \sigma_s P_j \left(\frac{2z}{h}\right) dz, \quad Q_{3n} = \int \sigma_{nz} P_2 \left(\frac{2z}{h}\right) dz, \\ M_{1n} &= \int \sigma_n z dz = \frac{h}{2} \int \sigma_n P_1 \left(\frac{2z}{h}\right) dz, \quad M_{jn}^0 = \int P_n(z,s) P_j \left(\frac{2z}{h}\right) dz, \quad M_{js}^0 = \int P_s(z,s) P_j \left(\frac{2z}{h}\right) dz, \\ Q_{jn}^0 &= \int P_n(z,s) P_{j-1} \left(\frac{2z}{h}\right) dz, \quad (j=1,3), \end{split}$$

где $P_n(z,s)$, $P_s(z,s)$, $P_z(z,s)$ - составляющие поверхностных сил, приложенных к боковой поверхности, интегрирование проводится по толщине.

Система уравнений (3), (4) сводится к следующей системе уравнений

$$B_3 B_4 \nabla^4 \phi - (A_1 B_4 + A_{11} B_3) \nabla^2 \phi + + (A_1 A_{11} - A_8^2) \phi = 0.$$
 (7)

$$A_1 \varphi_1 - A_2 \nabla^2 \varphi_1 + A_3 \nabla^2 \varphi_3 + A_4 \varphi_3 + A_5 \nabla^2 w_1 - A_6 \nabla^2 w_3 + A_7 \nabla^2 q = 0.$$
 (8)

$$A_8\varphi_1 + A_9\nabla^2\varphi_1 - A_{10}\nabla^2\varphi_3 + A_{11}\varphi_3 + A_{12}\nabla^2w_1 + A_{13}\nabla^2w_3 + A_{14}\nabla^2q = 0.$$
 (9)

В уравнении (7) ϕ -вихревая функция, через которую выражаются $\phi_1(x,y)$ и $\phi_3(x,y)$.

$$\phi_1 = \left(\frac{Gh}{7}\nabla^2\phi - A_{11}\phi\right)/A_8, \ \phi_3 = \phi.$$
 (10)

Из (5) и (6) определяем φ_1 и φ_3 .

$$\varphi_{1} = \frac{1}{\Delta} \left[-a_{6} \nabla^{2} w_{1} - A_{12} (A_{22}) w_{3} + a_{13} \nabla^{2} w_{3} + a_{12} q \right]; \quad \varphi_{3} = \frac{1}{\Delta} \left[a_{3} \nabla^{2} w_{1} + A_{5} (A_{22}) w_{3} - a_{9} \nabla^{2} w_{3} + a_{11} q \right],$$

$$\tag{11}$$

ГДе
$$a_6=A_{16}A_{21}+A_{20}A_{17},\ a_{12}=A_{16}A_{24}-A_{20},\ a_{13}=A_{20}A_{18}-A_{16}A_{23},\ a_3=A_{15}A_{21}+A_{19}A_{17},$$

$$a_9=A_{23}A_{15}-A_6A_{18},\ a_{11}=A_{19}-A_{24}A_{15},\ \Delta=A_{15}A_{20}-A_{19}A_{16}.$$

Подставляя φ_1 и φ_3 в (8) и (9), получаем систему уравнений в перемещениях для определения потенциального напряженного состояния пластины.

$$L_{j1}w_1 + L_{j2}w_3 + L_{jq} = 0$$
, (j=1-2) (12)

где $L_{\it ji}$ - дифференциальные операторы, здесь не приводятся.

Таким образом, решение задачи об изгибе пластины свелось к определению w_1, w_3, ϕ из системы уравнений (12), описывающей потенциальное напряженное состояние, и уравнения (7), определяющего вихревое напряженное состояние (вихревой краевой эффект).

При этом φ_1 , φ_3 , ϕ_1 , ϕ_3 , u_1 , u_3 , v_1 , v_3 определяются через w_1, w_3, ϕ из (11), (10), (3), (4).

В качестве примера рассмотрена задача изгиба прямоугольной, свободно опертой по контуру пластины $(a \times a)$, под действием поперечной локальной в виде пирамиды нагрузки с размером её основания $\alpha = 0.3$.

Нагрузка принималась в виде ряда:

$$\begin{split} q(x,y) &= -\sum_{m=1,3}^{\infty} \sum_{n=1,3}^{\infty} A_w^{m,n} S_x S_y \\ S_x &= \sin P_m x, \, S_y = \sin P_n y, \quad P_m = \frac{m\pi}{a}, \, P_n = \frac{n\pi}{b} \,. \\ A_w^{mn} &= -\frac{8q_0}{\pi^2 mn} \sin \frac{m\pi}{2} \sin \frac{n\pi}{2} \frac{a}{\pi \alpha} \times \times \left[\frac{1}{m+n} \sin \left(\pi \frac{m+n}{2} \frac{\alpha}{a} \right) - \delta \right], \\ \delta &= \frac{1}{m-n} \sin \left(\pi \frac{m-n}{2} \frac{\alpha}{a} \right) \, \left(m \neq n \right), \quad \delta = \pi \, \frac{\alpha}{2a} \left(m = n \right), \end{split}$$

m, n - нечетные числа от 1 до 39.

Результаты расчётов приведены в табл. 1.

Таблица 1 Действие локальной нагрузки на свободно опёртую трансверсально - изотропную пластину ($\alpha/a=0,3,\ x=y=0,5a$)

$\frac{E}{E_3}$	$\frac{G}{G_3}$	$\frac{h}{a}$	$\frac{z}{h}$	$\frac{\sigma_x}{q}$	$\frac{\sigma_z}{q}$	$\frac{wE}{qh}$
			0,00	0,000	0,000	21930
1	1	0.02	0,25	34.48	0,331	21930
			0,50	97,90	0,483	21920
1	1	0,1	0,00	0,000	0,000	37,57
			0,25	1,392	0,312	37,47
			0,50	4,104	0,483	37,17
1	20	0,02	0,00	0,000	0,000	23330
			0,25	33,42	0,323	23330
			0,50	100,8	0,483	23320
1	20	0,1	0,00	0,000	0,000	91,97
			0,25	0,958	0,286	91,90
			0,50	5,351	0,483	91,69
			0,00	0,000	0,000	21910
4	1	0,02	0,25	33,45	0,332	21890
			0,50	98,55	0,483	21850
			0,00	0,000	0,000	36,53
4	1	0,1	0,25	1,900	0,302	36,08
			0,50	4,065	0,483	34,72

Выводы. По результатам расчёта пластин из анизотропного материала установлено, что податливость материала в значительной мере влияет на НДС пластин. С ростом податливости материала и увеличением толщины распределение по толщине напряжений существенно отличается от линейных.

Литература

- 1. Прусаков А.П. О построении уравнений изгиба двенадцатого порядка для трансверсально-изотропной пластины / Прикладная механика. 1993. N12. C. 51-58.
- 2. Прусаков А.П., Зеленский А.Г., Вовченко Н.Г. Об одной неклассической теории изгиба трансверсально-изотропных пластин и пологих оболочек // Ukrainian-Pol / s4 seminar. Theoretical Foundations in Civil Engineering, 5, Warsaw, June 1997. C.191-198.