Секция: Технические науки

### Калинин Юрий Анатольевич

заместитель начальника центрального диспетчерского отдела

ЧАО «Запорожтрансформатор»
г. Запорожье, Украина

### Ефременко Василий Георгиевич

доктор технических наук, профессор, заведующий кафедрой физики ГВУЗ «Приазовский государственный технический университет» г. Мариуполь, Украина

# Брыков Михаил Николаевич

доктор технических наук, профессор, профессор кафедры ОТСП Запорожский национальный технический университет г. Запорожье, Украина

# Андрущенко Михаил Иванович

кандидат технических наук, доцент, доцент кафедры ОТСП Запорожский национальный технический университет г. Запорожье, Украина

### Осипов Михаил Юрьевич

кандидат технических наук, доцент, доцент кафедры ОТСП Запорожский национальный технический университет г. Запорожье, Украина

# Коротич Юлия Станиславовна

магистр каф. ОТСП Запорожского национального технического университета г. Запорожье, Украина

# СТРУКТУРА ЗОН СПЛАВЛЕНИЯ И ТЕРМИЧЕСКОГО ВЛИЯНИЯ ВЫСОКОУГЛЕРОДИСТОЙ НИЗКОЛЕГИРОВАННОЙ СТАЛИ ПРИ РУЧНОЙ ДУГОВОЙ СВАРКЕ С УСКОРЕННЫМ ТЕПЛООТВОДОМ

Сварка сталей с повышенным содержанием углерода, как правило, затруднена в связи с образованием хрупких закалочных структур в зоне термического влияния (ЗТВ). В связи с этим для получения бездефектных сварных соединений данных материалов используют предварительный и сопутствующий подогревы и замедленное охлаждение. Однако при необходимости выполнения сварки предварительно термически обработанной высокоуглеродистой стали 120Г3С2, которая может быть ДЛЯ повышения износостойкости при абразивном использована изнашивании [1], подогрев и/или замедленное охлаждение приведет к изменению необходимой структуры всей свариваемой детали и, как следствие, к снижению эксплуатационных свойств.

Состав стали 120Г3С2 обеспечивает после закалки от 1000 °С почти полностью аустенитную структуру в связи с достаточно высоким содержанием аустенизаторов (углерод и марганец). Аустенит в отличие от мартенсита не должен приводить к охрупчиванию околошовной зоны, поэтому при сварке данной стали, очевидно, нет необходимости в подогреве и замедленном охлаждении. Наоборот, необходимо обеспечить ускоренное охлаждение сварного соединения, чтобы в той части ЗТВ, которая будет нагрета выше температур фазового превращения, получить закалку, а в зоне нагрева до меньших температур минимизировать влияние отпуска на предварительно закаленный материал.

С целью исследования влияния ускоренного охлаждения на структуру ЗТВ стали 120Г3С2 выполнили пробный сварочный цикл с использованием полосы толщиной 5 мм предварительно закаленной от 1000 °C. Образец был закреплен вертикально, и на его ребре была

поставлена «точка» ручной дуговой сваркой с использованием электрода НИИ48-Г [2]. Сварочный цикл был выполнен как можно более коротким. Ускоренное охлаждение обеспечивалось за счет теплоотвода вглубь Температуру ЗТВ измеряли с помощью ХА холодного образца. термопары, приваренной на расстоянии около 5 мм от кромки пластины. В результате эксперимента спай термопары оказался как раз на линии сварочной сплавления ванны И основного металла (рис. Зарегистрированная зависимость температуры ЗТВ от времени показана на рис. 2.



Рис. 1. Вид зоны сплавления

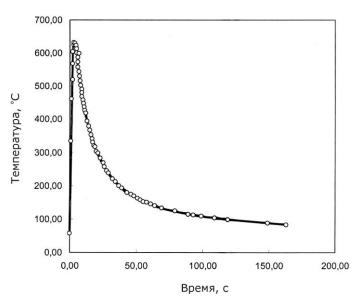



Рис. 2. Зависимость время-температура на расстоянии примерно 5 мм от края пластины

Пластина стали 120Г3С2 в процессе её изготовления была обезуглерожена на глубину около 2 мм с каждой стороны. Поэтому после закалки от 1000 °С структура стали по сечению изменяется от преимущественно мартенситной на поверхности до аустенитной в центре [3]. Это дает возможность изучить структуру ЗТВ для любой из возможных структур термически обработанной тали 120Г3С2 — от мартенсита до аустенита.

Панорама микроструктуры ЗТВ приведена на рис. 3. Образец вырезан вертикально по центру зоны сварки (см. рис. 1). В структуре можно выделить четыре области: переплавленный электродный металл (1); линия сплавления основного и электродного металла (2); основной материал, нагретый выше критических точек и, соответственно, повторно закаленный (3); материал, изменивший структуру в результате нагрева до температур выше температурных порогов диффузии углерода и железа, но ниже критических точек (4).

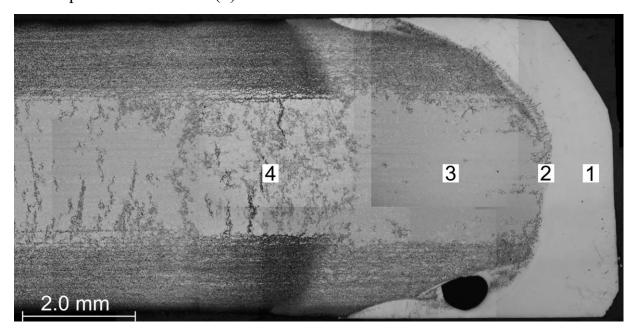



Рис. 3. Панорама микроструктуры участка сплавления и ЗТВ экспериментального образца

Согласно справочным данным [2] состав металла, наплавленного электродом НИИ-48Г следующий (масс. %): С – 0,13; Мп – 4,8-6,0; Si – 0,50-0,90; Ni – 8,50-10,00; Сг – 18,50-19,50. Ожидаемая структура металла в области 1 при таком химическом составе – аустенит. Ожидаемая структура повторно термообработанного основного металла в области 3 (центр образца) — также аустенит. На линии сплавления (2) наблюдается образование небольшого количества мартенсита (рис. 4), что может быть вызвано локальным колебанием химического состава металла, прежде всего по углероду.

В результате измерения микротвердости получены следующие значения для каждой из четырех областей ЗТВ: 1-220~HV0.05; 2-350-400~HV0.05; 3-220~HV0.05; 4-230-250~HV0.05. Трещины на линии сплавления и в ЗТВ не обнаружены.

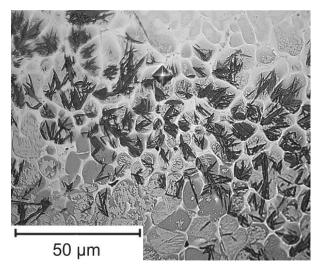



Рис. 4. Микроструктура линии сплавления

Таким образом, в результате анализа микроструктуры ЗТВ образца стали 120Г3С2 после имитации сварки электродом НИИ48-Г с ускоренным теплоотводом установлено, что в области повторной термической обработки отсутствуют дефекты микроструктуры. Это позволяет продолжить исследования влияния режимов сварки с ускоренным теплоотводом на структуру ЗТВ термически обработанной стали 120Г3С2.

### Литература

- Efremenko V.G. Two-body abrasion resistance of high-carbon high-silicon steel: Metastable austenite vs nanostructured bainite / V.G. Efremenko, O. Hesse, T. Friedrich, M. Kunert, M.N. Brykov, K. Shimizu, V.I. Zurnadzhy, P. Šuchmann // Wear. 2019. V. 418-419. P. 24-35.
- 2. Титов В.А., Волков А.Н., Брызгалин А.Г., Миличенко С.С. Электроды покрытые металлические для ручной дуговой сварки. Каталог-справочник. Том 2. К.: Экспловелд, 2000. 408 с.

3. Хессе О. Износостойкость обезуглероженного слоя высокоуглеродистой низколегированной стали в экстремальных условиях трения / О. Хессе, М. Кунерт, В.Г. Ефременко, К. Шимицу, М.Н. Брыков, А.Е. Капустян // Наукові нотатки. — 2017. — Вип. 58. — С. 301-307.