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Summary. Different approaches to sensitivity analysis and ways to affect 

the slope were investigated. 
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Аннотация. Исследованы различные подходы к анализу 

чувствительности и возможности влияния на склон. 
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Беллмана, анализ стабильности склона. 

 

Introduction.  In the field of slope stability, sensitivity analysis is generally 

conducted by means of a series of calculations in which each significant parameter 

is varied systematically over its maximum credible range in order to determine its 

influence upon the safety factor [2]. If one is interested in characterizing the 

variation in safety when encounter minor modifications in the parameters, these 

incremental techniques define an approximation of the safety factor gradient. In 

this case, for discrete problems (i.e., slices) the sensitivity may be calculated in a 

simpler and compact way by using the techniques that have been developed in the 

area of non-linear optimization [3]. When dealing with continuous problems as 

those linked to the variational approach of slope stability analysis, the formulation 

put forth by Castillo et al. [4] can be used. 

In any event, regardless of how the sensitivity analysis is done, when 

instability occurs, a sensitivity analysis allows to know which qualitative or 

quantitative actions are more appropriate to stabilize the given slope. Therefore, 

the sensitivity analysis is a useful tool able to provide a sound assessment for the 

selection of the slope stabilization method. Our main objective in this article is to 

analyze the use of this sensitivity analysis tool. 

It is routinely performed by two-dimensional (2D) limit equilibrium 

methods. For rock slopes, conventional methods developed for soil slopes, e.g. 

Bishop’s simplified method recommended by Hoek and Bray [1], are often 

adopted. However, other methods, e.g. Sarma [2] which employs slices with 

inclined interfaces to simulate structural discontinuities, have been highly 

commended [3]. Unfortunately, most of these analyses are limited to two 

dimensions, which cannot properly model the true three-dimensional (3D) 



International Scientific Journal “Internauka” http://www.inter-nauka.com/ 

International Scientific Journal “Internauka” http://www.inter-nauka.com/ 

characteristics of a landslide. A practical 3D slope stability analysis method and 

the related computer programs are therefore urgently required [4,5].There are a 

large number of publications that deal with 3D slope stability analysis. In general, 

these methods can be classified into two categories. 

The limit equilibrium approach. Duncan [6] reviewed the main aspects 

of 24 publications dealing with limit equilibrium approaches. The failure mass is 

divided into a number of columns with vertical interfaces and the conditions for 

static equilibrium are used to find the factor of safety. Hungr [7], Hungr et al. [8], 

Chen and Chameau [9] and Lam and Fredlund [10] extended Bishop’s simplified, 

Spencer’s and Morgenstern and Price’s methods from two to three dimensions, 

respectively.  

Both when limit equilibrium methods are used, and when the kinematic 

approach of limit analysis is applied, if the safety factor is defined as the ratio of 

the shear stress of the soil to the shear stress at failure, slope stability is generally 

evaluated as a ratio: 

       𝐹 =  
𝑆

𝐷
=  

∫ 𝐺(𝑥,𝑦(𝑥),𝑦′(𝑥),𝑦𝐺(𝑥),𝑦′
𝐺(𝑥),𝑢(𝑥,𝑦);𝑝)

𝑏

𝑎
𝑑𝑥

∫ 𝑄(𝑥,𝑦(𝑥),𝑦′(𝑥),𝑦𝐺(𝑥),𝑦′
𝐺(𝑥),𝑢(𝑥,𝑦);𝑝)

𝑏

𝑎
𝑑𝑥

             (1) 

For the two-dimensional collapse mechanism defined in Fig. 1, a and b are 

the x-coordinates of the sliding line end points, 𝑦𝐺(𝑥)y is the ground profile 

(ordinate at point x), y(x) is the ordinate of the sliding line at point x, and 𝑦′(𝑥) is 

its first derivative. The 𝑢(𝑥, 𝑦) function defines the distribution of the soil water 

pressure.  

 

Fig. 1. Collapse mechanism in the limit equilibrium approach 
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Finally, vector p groups all the parameters together. In principle, it could 

be a vectoral field (if, for example, the spatial variation of the strength parameters 

is taken into account), though what usually happens is that it contains only a 

discrete number of parameters which are constant throughout the entire domain. 

G and Q are two functionals that define the actions over the system. When limit 

equilibrium methods are used, actions are identified with forces or moments. On 

the other hand, if the kinematic approach of limit analysis is used, the actions may 

be identified with the internal dissipation of energy, and the external work. This 

procedure is referred to as the ‘‘kinematical approach” in this paper. 

The slope stability problem can be stated as the minimization of the ‘‘safety 

functional” (as Baker and Garber [5], termed the quotient F of Eq. (1)) to find the 

safety factor: 

                𝐹 = 𝑀𝑖𝑛𝑦(𝑥),𝛿(𝑥){𝐹[𝑦(𝑥), 𝛿(𝑥)]}                                (2) 

where 𝛿(𝑥) represents the distribution of stresses along 𝑦(𝑥). To minimize 

the quotient functional, the Petrov method can be used. Petrov [6] showed that 

stationary ‘‘points” (functions), of a ratio can be obtained by extremizing an 

auxiliary functional 𝑅 = 𝑅(𝐹𝑆) = 𝐺 − 𝐹𝑆𝑄, where 𝐹𝑆 is the unknown minimum 

value of the ratio 𝐺/𝑄, which can be evaluated from the constraint 𝑅(𝐹𝑆) = 0. 

The minimization can also be done by an iterative method. This is the case of 

Baker [7], when he applies the dynamic programming algorithm iteratively, i.e., 

assuming a value for 𝐹𝑆, and establishes the critical slip surface 𝑦𝐶𝑅(𝑥|𝐹𝑆), by 

minimizing 𝑅 [𝑦(𝑥)|𝐹𝑆], obtaining a new estimate of 𝐹𝑆 by applying the Spencer’s 

procedure to this critical slip surface, and repeating the process until the assumed 

and resulting values of 𝐹𝑆 are equal. Although the two preceding methods have 

proved its efficiency, for the approach proposed in this paper is of interest to 

minimize the quotient functional directly: 

          
𝜕𝐹

𝜕𝑝𝑖
=  

𝜕(𝑆/𝐷)

𝜕𝑝𝑖
=

𝜕𝑆

𝜕𝑝𝑖
−𝑆

𝜕𝐷

𝜕𝑝𝑖

𝐷2
=

1

𝐷
(

𝜕𝑆

𝜕𝑝𝑖
− 𝐹𝑆

𝜕𝐷

𝜕𝑝𝑖
)                           (3) 
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Then, standard optimization packages, as GAMS [8] for example, can be 

used. This allows to convert  𝐹𝑆 into one more variable that has to satisfy its 

definition (Eq. (1)). Therefore, it is not needed to worry about the method of 

solution, because the method implemented in the software package takes this into 

account as one constraint. As a result, in keeping with the proposal of Castillo et 

al. [9], the components of the vector of sensitivities 𝑠 of the objective function 

with respect to 𝑝 can be defined as: 

                 𝑠𝑖 =
𝜕𝐹

𝜕𝑝𝑖
=

1

𝐷
∫ (

𝜕𝐺

𝜕𝑝𝑖
−𝐹

𝜕𝑄

𝜕𝑝𝑖
)

𝑏

𝑎
𝑑𝑥

1−
1

𝐷
∫ (

𝜕𝐺

𝜕𝐹
−𝐹

𝜕𝑄

𝜕𝐹
)

𝑏

𝑎
𝑑𝑥

                                          (4) 

 

where for simplicity, the arguments of the functionals have been omitted. 

The safety factor local sensitivities are defined as the partial derivatives of the 

safety factor with respect to the parameter being studied. The partial derivatives 

are calculated at the optimum value. Thus, these sensitivities provide only a linear 

approximation in a neighborhood of the optimal point, and they only indicate the 

direction of the action to be taken. Since small property increments 𝛿𝑝𝑖 would 

produce significant changes in the critical slip surface, the simultaneous variation 

of all the variables and functions involved is taken into account, included the slip 

surface. 

When idealized examples are analyzed, the slope stability can be studied 

analytically, and the sensitivity of the solution can be characterized on the basis 

of the parameters using Eq. (4). In many practical applications, however, these 

analytical computations cannot be carried out. In these cases, the 𝑆/𝐷 ratio is 

generally discretized by means of slices (limit equilibrium method) or blocks 

(kinematical approach). When these approaches are adopted, the problem is 

usually solved by using numerical tools [10,11]. The simplest way of approaching 

s consists on the application of a finite difference scheme: 

                       𝑠𝑖 =
𝛿𝐹

𝛿𝑝𝑖
≈

𝐹+−𝐹−

2𝛿𝑝𝑖
                                           (5) 
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where 𝐹+ defines the value of 𝐹 when the 𝑖th component of 𝑝 is increased 

by 𝛿𝑝𝑖, with 𝐹− having a similar definition but with 𝑝𝑖decreasing. If vector 𝑝 

contains 𝑛𝑝 components, it would be required to solve 2 × 𝑛𝑝 minimization 

problems, in addition to the fundamental problem for determining 𝐹. For this 

reason, it is more efficient to introduce the following discretization of Eq. (4) into 

the numerical solver: 

            𝑠𝑖 =
𝜕𝐹

𝜕𝑝𝑖
=

1

𝐷
∑ (

𝜕𝐺

𝜕𝑝𝑖
−𝐹

𝜕𝑄

𝜕𝑝𝑖
)𝑘∆𝑥𝑘

𝑛
𝑘=1

1−
1

𝐷
∑ (

𝜕𝐺

𝜕𝐹
−𝐹

𝜕𝑄

𝜕𝐹
)𝑘∆𝑥𝑘

𝑛
𝑘=1

                                (6)  

where 𝑛 is the number of slices/blocks, and ∆𝑥𝑘 is the horizontal width of 

the 𝑘th slice/block. To evaluate Eq. (6) it is necessary to have previously obtained 

the values of the partial derivatives 

𝜕𝐺

𝜕𝑝𝑖
, 

𝜕𝑄

𝜕𝑝𝑖
, 

𝜕𝐺

𝜕𝐹
, and 

𝜕𝑄

𝜕𝐹
. To this end, the use of a symbolic programming code 

for obtaining closed-form expressions of these functions makes this task easier.   

Once 𝑠 is computed, the increase 𝛿𝐹 undergone by the safety factor after 

introducing a perturbation of value 𝛿𝑝 in the parameters can be estimated as: 

          𝜕𝐹 = 𝑠 ∙ 𝜕𝑝 =  ∑ 𝑠𝑖
𝑛𝑝

𝑖=1
∙ 𝜕𝑝𝑖                                          (7) 

This 𝜕𝑝 action will entail an associated cost 𝐶, which may generally be a 

non-linear function of the variation in the parameters: 

             𝐶 = 𝐶(𝜕𝑝) =  ∑ 𝐶𝑖(𝜕𝑝𝑖
𝑛𝑝

𝑖=1
)                                          (8) 

Once the cost functions 𝐶𝑖 have been defined, the stabilization problem can 

be dealt with as if it were a minimization problem: 

              min
𝜕𝑝

𝐶  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝜕𝐹 =  𝜕𝐹∗                                         (9) 

i.e., what is looked for is the minimum cost required for a given 

improvement 𝜕𝐹∗ in the safety factor. Close to failure, it is usually needed to make 

a quick decision to prevent the collapse evolution. Then, moving from a safety 
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factor 1.00 to a safety factor of 1.05 can be sufficient provided that the soil 

parameters are derived from a well-documented back analysis [12]. In this case, 

the linear approach (Eq. (7)) can be valid. However, if large changes are done, 

perhaps additional calculations must replace the linear approach to evaluate the 

final safety of the slope. Note that since sensitivities are partial derivatives at the 

optimal point, they indicate which direction to follow. These directions obviously 

change when one move further from the optimal point, and recalculation is then 

necessary.  

It should be bear in mind that if the linearization of 𝜕𝐹 is not adopted, the 

constraint of Eq. (9) will entail the implicit resolution of the optimization problem 

related to the computation of a safety factor 𝐹 equal to 𝐹∗ +  𝛿𝐹∗. This causes a 

significant increase of the computing time, including pre and post-processing. It 

will become even more evident if the stabilization project is formulated like a 

decision-making process (see, for example, [13]), and it will include cost/benefit 

analyses that will generally involve risk assessment and the probabilistic analysis 

of collapse and the corresponding cost (see, for example, [14]). Then, a huge 

number of resolutions of Eq. (9) will be needed. Although these types of studies 

are not within the scope of this article, the methodology put forth here can indeed 

be used in such cases. 

However, only limited reports on the application of these methods have 

been documented. Stark and Eid [11] reviewed three commercially available 

computer programs in their attempts to analyze several landslide case histories 

and concluded that ‘‘the factor of safety is poorly estimated by using 

commercially available software because of limitations in describing geometry, 

material properties and/or the analytical methods’’. In general, the methods of 

columns with vertical interfaces suffer the following limitations: 

 A large number of assumptions have to be introduced to render the problem 

statically determinate. Lam and Fredlund [10] balanced the number of 

equations that can be established from physical and mechanical 
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requirements to the number of unknowns involved in these equations. They 

found that, for a failure mass divided into n rows and m columns (refer to 

Fig. 1), a total of 8mn assumptions are required. 

 The method is further hampered by complicated 3D vector analysis that 

generally involves a set of nonlinear simultaneous equations. Iteration is 

necessary to obtain a solution unless further simplifications are introduced. 

 Since the method as applied to three dimensions is in its infancy, no attempt 

has yet been published to find a critical 3D slip surface of a generalized 

shape. 

The upper bound approaches.  The basic principles of the upper bound 

theory of plasticity as applied to 2D geomechanical problems are well 

documented [12]. Publications dealing with this subject in three dimensions is 

also available [13,14]. Most of the work is based on analytical approaches in 

which the failure mass is divided into several blocks with simplified slip surface 

shapes such as straight or logarithmic lines. The often complex geometry of the 

surface of the slope is usually simplified to a plane described by two straight lines. 

The material is assumed to be homogeneous and ground water conditions are 

either ignored or over-simplified. These simplifications have limited the 

application of these methods to practical problems. Recently, Donald and Chen 

[15] proposed a 2D slope stability analysis method that is based on the upper 

bound theorem but arrives at a solution numerically. The failure mass is divided 

into slices with inclined interfaces. They demonstrated that this method is 

equivalent to Sarma’s method of non-vertical slices and therefore is particularly 

applicable to rock slopes. However, unlike Sarma’s original work that employed 

force equilibrium, they started the calculation by establishing a compatible 

velocity field and obtained the factor of safety by the energy-work balance 

equation. The subsequent automatic search for the critical failure modelled to 

success in finding accurate solutions for a number of closed-form solutions 

provided by Sokolovski [16]. The method described in this paper is an extension 
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of Donald and Chen’s 2D approach. The failure mass is divided into a number of 

prisms with inclined interfaces. It uses the upper-bound theory and therefore 

avoids introducing a large number of assumptions. In three dimensions, the 

solution for the factor of safety still remains a scalar manipulation of energy-force 

balance without the need for complicated non-linear 3D force equilibrium 

equations. Optimization routines are followed to find the critical failure mode 

The upper bound method. The statement of the upper bound theorem, as 

it applies to soil mechanics, is described in Chen [12]. Its application to slope 

stability analysis is discussed by Donald and Chen [15].  

For a slope that is at limit state, the material within the sliding surface, 

represented as Ω*, is assumed to be plastic everywhere and therefore at yield. 

Under these conditions, the upper bound theorem states that among 

all possible external loads applied to a kinematically admissible plastic zone Ω* , 

the external load 𝑇 that brings about failure on a failure mode Ω, can be 

approached by minimizing 𝑇* as determined from the following work-energy 

balance equation. 

     ∫ 𝜎𝑖𝑗
∗ 𝜀𝑖𝑗

∗ 𝑑𝑣 +  ∫ 𝑑𝐷𝑆
∗.

𝑇∗

.

Ω∗ = 𝑊𝑉∗ + 𝑇∗𝑉∗                          (10) 

where 𝑉∗ is the rate of plastic displacement, generally referred to as the 

plastic velocity. 𝑊 is the body force corresponding to the plastic zone. The left-

hand side of Eq. (1) represents the rate of internal energy dissipation within the 

failure mass and along the slip surface. 
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Fig. 2. 3D slope view 

 

The 3D energy approach described here in approximates the failure mass 

by a series of prisms having rectangular inclined side faces (Fig. 2). For this form 

of discretization, Eq. (10) may be approximated in the form of a summation. 

        ∑ 𝐷𝑖↔𝐽
∗ + ∑ 𝐷𝑖↕𝑗

∗ + ∑ 𝐷𝑖𝑗
∗ = 𝑊𝑉∗ + 𝑇∗𝑉∗                       (11) 

where the symbol ↕ is used to represent the interfaces between two adjacent 

columns and ↔, between two adjacent rows of prisms (refer to Fig. 2). The three 

terms in the left-hand side of the equation approximate the energy dissipation on 

the row-to-row and column-to-column interfaces and on the slip surface, 

respectively. For a soil or rock slope that is subjected to an external load 𝑇0, the 

upper bound theorem states that the loading factor η, defined as 

                          η =  
𝑇0−𝑇∗

𝑇0
                                          (12) 

should approach its minimum in order to bring the structure to failure. Other 

alternatives include the coefficient of critical horizontal acceleration of the body 

force applied on the failure mass, as suggested by Sarma [2] and discussed by 

Donald and Chen [15]. The main advantage of using these approaches is that η 
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can be determined in a straightforward way from Eq. (11) without the need for 

iteration. 

The stability of a slope is generally assessed by determining the factor (of 

safety), 𝐹, by which the available shear strength parameters 𝑐′ and 𝜙′ need to be 

reduced to bring the structure to a limit state of equilibrium. The reduced 

parameters 𝑐′ 𝑒  and 𝜙′𝑒 can therefore be defined by 

                               𝑐′ 𝑒 =  𝑐′/𝐹                                               (13) 

                             tan 𝜙′𝑒 = tan 𝜙′/𝐹                                              (14) 

The upper bound method therefore requires that the minimum value of 𝐹 

related to a critical failure mechanism and determined from Eq. (15) be found. 

  ∑ 𝐷𝑖↔𝐽,𝑒
∗ + ∑ 𝐷𝑖↕𝑗,𝑒

∗ + ∑ 𝐷𝑖𝑗,𝑒
∗ = 𝑊𝑉∗ + 𝑇0𝑉∗                (15) 

The three terms with subscript ‘𝑒’ on the left-hand side of Eq. (15) are 

determined on the basis of the reduced strength parameters defined by Eqs. (13) 

and (14). For the remainder of this paper, the subscript ‘𝑒’ is attached to any 

variable that has been calculated using these reduced strength parameters. 

Conclusion. An effective solution procedure for the determination of the 

critical slip surface and its associated factor of safety has been presented. The 

procedure may handle any slope geometry, layering, external loads, and pore-

pressure distributions. The critical slip surface is not restricted to be of any shape. 

The computer program SSDP couples dynamic programming minimization with 

the Spencer method for slope stability analysis. A similar approach may, however, 

be utilized for any other slope stability method which satisfies all equilibrium 

conditions and is valid for slip surfaces of arbitrary shape. 
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