
International Scientific Journal “Internauka” http://www.inter-nauka.com/

International Scientific Journal “Internauka” http://www.inter-nauka.com/

Technical Sciences

UDC 004.4'22

Andrusiv Andrii

Student of the Faculty of Informatics

and Computer Science of the

National Technical University of Ukraine

“Igor Sikorsky Kyiv Polytechnic Institute”

ROLE OF BUILD AUTOMATION TOOLS IN SOFTWARE

DEVELOPMENT

Summary. The process of turning source code into executable application

is a hard and timewasting experience. In big projects which use databases and a

lot of external libraries it is nearly impossible to keep track of all dependencies

there are and tests that code must pass trough. That’s why build automation tools

exist. The article overviews and analyzes popular methods and tools used for build

automation.

Key words: build automation, continuous integration, software testing,

maven, gradle, gulp, bazel.

Introduction. Build tools are utilities that automate all task needed to

create executable application from code. Build automation cycle includes

different tasks depending on the tool, but basic tasks are [3]:

 Downloading dependencies.

 Compiling source code.

 Packaging binary code into executable file.

 Running automated tests.

Optionally build cycle can also deploy ready-to-run project on a platform

and create project documentation [3].

International Scientific Journal “Internauka” http://www.inter-nauka.com/

International Scientific Journal “Internauka” http://www.inter-nauka.com/

Why do build tools exist?

Really small projects that doesn’t use any external libraries can be easily

build without using any building tools, but as soon as some external libraries or

media/text files are included, or tests must be executed, developer will start having

troubles following all dependencies, including files in the right spot, and making

sure that ready application will pass all the tests needed. Using a tool in big

projects allows the build process to be executed in right sequence and with right

dependencies, and in general to be more consistent, saving time, money, and

developers from going insane.

Types of building tools [3]:

 Build utility – tool that generates build artifacts through tasks. The main

function of this utility is automation of simple, repeatable tasks. Developer

can go through whole building cycle as well as execute individual tasks if

needed (for example you can clean previous build or run changed tests on

already existing build)

 Build servers – usually web based tools, use build utilities on a

scheduled or individually triggered basis.

They usually called continuous integration servers. Continuous

integration is the idea of merging all working copies to a shared main

branch, and then executing building on daily basis to discover problems as

quickly as possible. The main idea of CI is to reduce number of mismatches

caused by a lot of people committing to the same project. It does that by

making a new build and running tests each time one of the developers

commits. The longer main branch of code remains checked out, the greater

risk of conflicts. So CI servers try to rebuild projects as frequently as

possible.

Here some examples of building utilities:

International Scientific Journal “Internauka” http://www.inter-nauka.com/

International Scientific Journal “Internauka” http://www.inter-nauka.com/

1. Apache Maven – one of the most popular building utilitie, and at the

same time one of the oldest. Maven took Apache Ant as a base and improved on

it. It operates by following instructions written in a pom-file using XML

language. POM file consists of build (version, language, plugins etc.) and

dependency (external libraries) instructions. Maven has a few different build

cycles (default, site, clean), but each task in a cycle can be run individually. The

dependencies specified in pom are downloaded from repository, considering

version and already considering other dependencies an external library can have.

Here is an example of Maven pom.xml file used in Java project [2]:

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>Internauka</groupId>

 <artifactId>HelloWorld</artifactId>

 <version>1.0-SNAPSHOT</version>

 <packaging>jar</packaging>

 <description> HelloWorld </description>

 <dependencies>

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>4.0</version>

 <scope>test</scope>

 </dependency>

 </dependencies>

</project>

The downsides of Maven is that it is hard to learn at first and it is not as

flexible as some other building tools due to pom file restrictions. And another

downside is that if all dependencies are downloaded from a repository, some of

International Scientific Journal “Internauka” http://www.inter-nauka.com/

International Scientific Journal “Internauka” http://www.inter-nauka.com/

newer open-source libraries could not yet be there, and in that case you have to

ether wait or to add them to your project build manualy.

2. Gradle – is a building utility that was based of Apache Ant and

Apache Maven but using it’s own domain specific language unlike XML style

instructions used by both Maven and Ant.

Gradle is a bit more flexible allowing developer to change build cycle of

application almost completely. So Gradle can be used in large services and multi-

projects builds. But while being able to work on more difficult projects, Gradle

builds faster due to incremental builds, were it determines which parts of a project

are updated, so parts of a build cycle that depend only on them don’t have to be

re-run.

Due to heavy influence of Maven, Gradle basic plugins are focused on Java.

But a lot of other languages and projects are supported too.

Gradle is using build.gradle file as instruction which is based on Groovy

instead of XML, so this leads to smaller files with less “garbage” which are easy

to read and change.

Here is an example of build.gradle file [2]:

apply plugin: 'java'

repositories {

 mavenCentral()

}

jar {

 baseName = 'Internauka'

 version = '1.0'

}

dependencies {

 compile 'junit:junit:4.0'

}

International Scientific Journal “Internauka” http://www.inter-nauka.com/

International Scientific Journal “Internauka” http://www.inter-nauka.com/

3. Bazel – is a free building automation utility by Google. Bazel is a

open-sourced part of a main build tool used by Google called Blaze. Bazel is quite

new, its first release date is in Marh 2015 and currently is in beta state.

Bazel is similar to Gradle, it is based on Ant and Maven, and it builds

applications using a set of rules which are not created using XML. Bazel uses

Skylark language to create instuctions (a subset of Python) . Bazel downloads

dependencies from a large pull of repositories[4]. And in the same way Gradle

does it, Bazel re-builds only parts of the project that was changed and which will

be affected by those changes. So overall Bazel is just a more refined Gradle for

Google needs. It is easily extendable due to Skylark language, and can use projects

build by differend utilities as a repository, so Bazel can use almost every bit of

code that is out there.

4. Front-end tools, Gulp and Grunt.

Another, a bit different category of build utilities appeared recently, which

is oriented on front-end development. They are commonly called JavaScript Task

Runners.

For this overview I picked 2 popular front-end building tools which are

Grunt and Gulp. Both of them are used as a command line tool for JavaScript

objects. The same way as regular build tools are, they performs repetitive tasks,

like compiling, testing etc. But they chase different goals then classic building

tools.

The dependencies and file management is not the main problem of front

end, so why do we need a building tool for JavaScript? Here is why:

a) Compile

Nowadays there is a lot of tools that need to be compiled.

b) HTTP request overhead.

Each file is loaded with a minimum of 20-100ms per request, and the

file size does not metter.

c) The bigger the file is – the bigger the download time.

International Scientific Journal “Internauka” http://www.inter-nauka.com/

International Scientific Journal “Internauka” http://www.inter-nauka.com/

d) Downloading the same file twice.

All of this is lowering the performance and making the client wait.

That’s where building tools come in, in front-end they are oriented to

improve performance of a web page. So what exactly this tools do?

a) Compiling new syntax to old syntax.

b) Concatenating files. Front-end projects usually have a lot of files,

even a basic one-page can have up to 5 JavaScript files plus CSS files. Each file

takes time to load, so to reduce the waiting time building tools can join all JS files

into one, so only one huge JS file will be loaded.

c) Uglify (compress/minify) JavaScript.

Developers need to have a particular way of structuring code and way of

naming functions and numbers that are “must have”, because it is a lot easier to

read and understand code in this way. But for a machine, it does not matter if you

name variable “A” or “SecondPageCartIncrementationFlag”, and we can cut out

all the spaces unnecessary for a machine, etc. So we can minimize that and

decrease the file sizes.

d) Revision – optimiza for caching.

After loading a file this tools can generate a hash and add it to the files that

are already loaded, so when next page starts loading it will see the hashes and load

only new files.

The main differences between grunt and gulp is that gulp is the more recent

one, meaning that it was developed considering all the up and downs of grunt.

Tasks in Gulp work using streams instead of files, like grunt does, so it does not

need to wait until one file finishes its work to work with another, so Gulp contacts

with a file system only in the beginning and at the end of its work.

Another difference is in configuration files, while Grunt files look more

like JSON then JS, Gulp’s files look like a simple clean JS code, which is more

understandable in big projects.

International Scientific Journal “Internauka” http://www.inter-nauka.com/

International Scientific Journal “Internauka” http://www.inter-nauka.com/

We overviewed a few major building tools that used in software

development. And analyzed functionality they offer. And to summaries it all.

Co-founder of Gulp:

“Builds can be the most awful sinkhole for teams to waste their time with”.

And that’s exactly why using build automation tools is one of the most

important things in software development. Why dig a hole yourself, when there is

machines made to do it? So next time you start a project, start it with the right

tool.

References

1. Continuous Delivery in Java. Essential Tools and Best Practices for

Deploying Code to Production. / By Abraham Marín-Pérez, Daniel Bryant –

Retrieved from https://www.safaribooksonline.com/library/view/continuous-

delivery-in/9781491986011/ch04.html

2. Ant vs Maven vs Gradle - Retrieved from http://www.baeldung.com/ant-

maven-gradle

3. Build automation – Retrieved from

https://en.wikipedia.org/wiki/Build_automation

4. Bazel documentation – Retrieved from

https://docs.bazel.build/versions/master/bazel-overview.html

https://www.safaribooksonline.com/library/view/continuous-delivery-in/9781491986011/ch04.html
https://www.safaribooksonline.com/library/view/continuous-delivery-in/9781491986011/ch04.html
http://www.baeldung.com/ant-maven-gradle
http://www.baeldung.com/ant-maven-gradle
https://en.wikipedia.org/wiki/Build_automation
https://docs.bazel.build/versions/master/bazel-overview.html

