
International Scientific Journal “Internauka” http://www.inter-nauka.com/

International Scientific Journal “Internauka” http://www.inter-nauka.com/

Технічні науки

УДК 004.75

Yaremenko V.

student

National technical university of Ukraine

«Igor Sikorsky Kyiv Polytechnic Institute»

Яременко Вадим Сергійович

студент

Національний технічний університет України

«Київський політехнічний інститут ім. Ігоря Сікорського»

Яременко Вадим Сергеевич

студент

Национальный технический университет Украины

«Киевский политехнический институт им. Игоря Сикорского»

DISTRIBUTED DATA CLUSTERING CURE ALGORITHM

APPROBATION USING HADOOP MAPREDUCE

АПРОБАЦІЯ РОЗПОДІЛЕНОГО АЛГОРИТМУ КЛАСТЕРИЗАЦІЇ

CURE З ВИКОРИСТАННЯМ HADOOP MAPREDUCE

АППРОБАЦИЯ РАСПРЕДЕЛЕННОГО АЛГОРИТМА

КЛАСТЕРИЗАЦИИ CURE С ИСПОЛЬЗОВАНИЕМ HADOOP

MAPREDUCE

Summary: In this article the modification of clustering CURE algorithm

for distributed calculations and results of its work in the Hadoop MapReduce

system are described.

Keywords: Data mining, Distributed clustering, CURE, Hadoop,

MapReduce.

International Scientific Journal “Internauka” http://www.inter-nauka.com/

International Scientific Journal “Internauka” http://www.inter-nauka.com/

Анотація: У даній статті описано модифікацію алгоритму

кластеризації CURE для роботи у розподіленій системі, а також результати

роботи цього алгоритму, отримані з використанням засобів Hadoop

MapReduce.

Ключові слова: Інтелектуальний аналіз даних, Розподілена

кластеризація, CURE, Hadoop, MapReduce.

Аннотация: В данной статье описано модификацию алгоритма

кластеризации CURE для работы в распределенной системе, а также

результаты работы этого алгоритма, полученные с использованием средств

Hadoop MapReduce.

Ключевые слова: Интеллектуальный анализ данных,

Распределенная кластеризация, CURE, Hadoop, MapReduce.

1. Introduction

With the increase in the amount of information, it is necessary to develop

algorithms for its fast and efficient processing. Parallel clustering algorithms and

implementation techniques are the key to meeting the scalability and

performance requirements entailed in such scientific data analyses. So far, there

are some parallel clustering algorithms, but all of them have following

drawbacks: a) They assume that all objects can reside in main memory at the

same time; b) Their parallel systems have provided restricted programming

models and used the restrictions to parallelize the computation utomatically.

Both assumptions areprohibitive for very large datasets with millions of objects.

Therefore, dataset oriented parallel clustering algorithms should be developed

[1, p.675]. One of such approaches is described in this article.

2. Parallel CURE algorithm based on MapReduce

In this section described the information about general CURE algorithm

design and parallel MapReduce CURE algorithm design. First part is needed to

International Scientific Journal “Internauka” http://www.inter-nauka.com/

International Scientific Journal “Internauka” http://www.inter-nauka.com/

present parallel parts of CURE algorithm, that could be implemented as map and

reduce operations.

2.1. CURE algorithm

CURE (Clustering Using REpresentatives) algorithm begins from taking a

small sample of the data and cluster it in main memory. In principle, any

clustering method could be used, but as CURE is designed to handle oddly

shaped clusters, it is often advisable to use a hierarchical method in which

clusters are merged when they have a close pair of points.

During the second step it is necessary to Select a small set of points from

each cluster to be representative points. These points should be chosen to be as

far from one another as possible.

Then each of the representative points should be moved a fixed fraction of

the distance between its location and the centroid of its cluster. Perhaps 20% is a

good fraction to choose. Note that this step requires a Euclidean space, since

otherwise, there might not be any notion of a line between two points [2, p.263].

The next phase of CURE is to merge two clusters if they have a pair of

representative points, one from each cluster, that are sufficiently close. The user

may pick the distance that defines “close.” This merging step can repeat, until

there are no more sufficiently close clusters [2, p.264].

So, after the analysis of above steps I understood that such operations

could be performed separately in the distributed system, no need to have the

whole dataset on one PC. Even more at the one moment of time it is enough to

have only the description of already known clusters (representative points and

centroid) and new point from the dataset. In the next part the details of such

approach are described.

2.2. CURE algorithm based on MapReduce

The general model consists of N nodes that run Map program and 1 node

that runs a Reduce program. Chunks from datasets are input to the map program.

International Scientific Journal “Internauka” http://www.inter-nauka.com/

International Scientific Journal “Internauka” http://www.inter-nauka.com/

One chunk is a description of one point (e.g. in Cartesian coordinate system it is

an array with coordinates). Map program finishes its work after the full dataset

on this node has being processed.

The output of map program is a set of key-value pairs, where the key is

equals to 1 and the value is a set of representative points from cluster(i,j). In this

case i – it is a number of the node and j – a cluster number from the i
th
 node. For

example, if on the node 2 there are 3 clusters of data, the output should be

following: key 1 value cluster(2,1); key 1 value cluster(2,2); key 1 value

cluster(2,3).

The reduce program gets the output of the map program. The main task of

reduce program is to merge clusters produced from all datasets. After merging is

done, the reduce program produces the resulting dataset which contains a

description of each cluster: centroid and representative points [3, p.204].

3. Experimental results

For the experiment two programs were developed using the Java

language. The first program has one thread and could be launched on each PC

with pre-installed Java virtual machine and the second program is written for

Hadoop MapReduce distributed system. Algorithms of both programs are

described in the part 2 of this article.

As I don’t have the direct access to a real distributed system, I launched

above programs on my local PC with such characteristics: Intel® Core
TM

 i7-

2630QM 2GHz, 4 GB DDR3 RAM, Ubuntu OS. Hadoop MapReduce system

was configured as a single-node cluster according to the official tutorial [4].

For the dataset generating one more program was developed. Input of this

program is size of future dataset, dimensions, number of clusters, size of field

(x-axis, y-axis borders). Output of this program is a file with floating-points

values – Cartesian coordinates of each point. For this experiment such

parameters were used: 2-dimensional coordinates, 100 MB, 250 MB, 500 MB,

International Scientific Journal “Internauka” http://www.inter-nauka.com/

International Scientific Journal “Internauka” http://www.inter-nauka.com/

1000 MB, 2000 MB, 4000 MB, 6000 MB and various number of clusters for

each dataset.

Plot with received results could be found on the figure 1 below. With

increasing of dataset size the efficiency of distributed CURE algorithm

implementation is clearly visible. But in the future it is necessary to get results

from the real environment, not from the local PC. Other parameters are

following: field borders are [0; 500] for x-axis and [0; 500] for y-axis, number

of clusters is 80, number of representatives points in cluster is 20, critical

distance (to merge clusters) is 20, move fraction is 20%.

Fig. 1. Running time in comparison with dataset size [author work]

Also, it is necessary to mention that such results differ for different

datasets. For example, in case of just one cluster programs run faster, because of

small amount of points to process, otherwise a big amount of comparison

operations will be performed between representative points of clusters. That’s

why a lot of experiment’s details are described above.

4. Conclusion

0

200

400

600

800

1000

1200

1400

1600

1800

2000

100 250 500 1000 2000 4000 6000

Se
co

n
d

Megabyte

One-thread program

Hadoop MapReduce

International Scientific Journal “Internauka” http://www.inter-nauka.com/

International Scientific Journal “Internauka” http://www.inter-nauka.com/

In this article was described an approach of the distributed CURE

algorithm implementation. The advantage of the described approach is in

distributed calculations on each node separately. Also, it is not necessary to load

a full dataset into the RAM because map task processes a chunk of data in a

correct way.

After the description of distributed CURE algorithm’s there are presented

details of efficiency of the proposed approach. As seen on the figure 1, the

efficiency of the algorithm is especially noticeable with a growth of dataset size.

The efficiency of the distributed implementation is seen on the dataset larger

than 400 MB. Unfortunately, there is one disadvantage of received results: there

were no ability to test Hadoop MapReduce program in the real distributed

environment, so presented values have been got from the personal computer.

Reference:

1. W. Zhao, H. Ma, Q. He (2009). Parallel K-Means Clustering Based on

MapReduce. CloudCom 2009, LNCS 5931, pp. 674-679.

2. J. Leskovec, A. Rajaraman, J. D. Ullman (2014). Mining Of Massive

Datasets, Second Edition. Cambridge University Press. ISBN-13: 978-

1107077232. Print.

3. V. Yaremenko (2017). An approach for data clustering CURE algorithm

implementation using the MapReduce technology. System Analysis and

Information Technologies. 19-th International Conference SAIT 2017

Kyiv, Ukraine. ISBN 978-966-2748-94-2. Print.

4. Hadoop: Setting up a Single Node Cluster. Access date: 06 May 2017.

Access link: https://hadoop.apache.org/docs/stable/hadoop-project-

dist/hadoop-common/SingleCluster.html.

