Reuven Tint

Number Theorist, Israel

Email: reuven.tint@gmail.com

www.ferm-tint.blogspot.co.il

USING THE METHOD OF INFINITE RISE TO OBTAIN CERTAIN TYPES OF SOLUTIONS OF THREE-TERM EQUATION TH (ELEMENTARY ASPECT)

ИСПОЛЬЗОВАНИЕ МЕТОДА БЕСКОНЕЧНОГО ПОДЪЕМА ДЛЯ ПОЛУЧЕНИЯ НЕКОТОРЫХ ТИПОВ РЕШЕНИЙ ТРЕХЧЛЕННЫХ УРАВНЕНИЙ (ЭЛЕМЕНТАРНЫЙ АСПЕКТ)

Annotation. An infinitely lifting method for making certain types of three-term equations, which is completely refuted by the ABC conjecture.

Keywords: three-term equation, the method of infinite growth, elementary aspect.

Аннотация. Использован метод бесконечного подъема для получения некоторых типов решений трехчленных уравнений, которыми полностью опровергается авс-гипотеза.

Ключевые слова: трехчленные уравнения, метод, бесконечный подъем, элементарный аспект.

§1

Theorem. "For all three are relatively prime positive integers a, b, c, such that $(a_{0} = a^{x}) + (b_{0} = b^{y}) = (c_{0} = c^{z})$, for x> 0, y> 0 are arbitrary real positive numbers, $z = \frac{\ln(a^{x} + b^{y})}{\ln c}$), runs in an infinite number of cases $c_{\infty}^{2} > \operatorname{rad}(a_{\infty}b_{\infty}c_{0})$ ". (1)

Evidence

1.1. We have (1) for positive numbers a_0 , b_0 , c_0 the equation $a_0 + b_0 = c_0$ (2).

From (2)
$$(\sqrt{a_0})^2 + (\sqrt{b_0})^2 = (\sqrt{c_0})^2$$
 (3). Let us assume (3) 1) $m_1 = \sqrt{a_0}$, $n_1 = \sqrt{b_0}$,

$$a_1 = m_1^2 - n_1^2 = |a_0 - b_0|, \qquad b_1 = 2m_1n_1 = 2^{\alpha = 1}. |\sqrt{a_0b_0}|, \quad c_1 = m_1^2 + n_1^2 = (a_0 + b_0) = c_0, c_{1=}^2 c_0^{2^{\alpha = 1}}.$$

2)
$$m_2 = a_1 = |a_0 - b_0|$$
, $n_2 = b_1 = 2|\sqrt{a_0b_0}|$, $a_2 = m_2^2 - n_2^2 = (a_0 - b_0)^2 - (2\sqrt{a_0b_0})^2$,

$$b_2 = 2m_2n_2 = 2^2 |(a_0 - b_0)| \cdot |\sqrt{a_0b_0}| , \quad c_2 = m_2^2 + n_2^2 = c_0^2 , \quad c_2^2 = c_0^{2^{\alpha = 2}}.$$
 etc.

.....

$$\propto$$
) $b_{\alpha} = (b_{\alpha}: 2^{\alpha}). 2^{\alpha}, c_{\alpha}^{2} = c_{0}^{2^{\alpha}}, \propto 1,2,3,...$

1.2. Statement. "Each equation (2) is the source for in countless cases of "exceptional" triples such that $c_{\infty}^2 = c_0^{2^{\infty}} > rad(a_{\infty} b_{\infty} c_0)$, starting with some " ∞ ", If only $m_{\infty} = a_{\infty-1}$, $n_{\infty} = b_{\infty-1}$ ",

and so recursively to infinity.

Evidence

1.2.1. We have the identity: $c^6-a^6-b^6\equiv 3a^2b^2c^2$, if $a^2+b^2=c^2$; $a,b,c-relatively\ prime$

integers. Definitions of $3a^2b^2c^2 < c^6$ и $c^2 > |ab|$.

1.2.2. Always at some point in the infinite series $2^1, 2^2, 2^3, \dots, 2^{\infty}$ There

"\infty" such, that in " b_{α} " factor $2^{\alpha} > c_0$ (endless lifting method). Hence, $c_{\alpha}^2 = c_0^{2^{\alpha}} > rad(a_{\alpha}b_{\alpha}c_0)$.

1.23. Thereby completely proved Theorem (1).

Examples:

1) For x=y=z=1 3+2=5 ($a^{\frac{1}{2}}$)² + ($b^{\frac{1}{2}}$)² = ($c^{\frac{1}{2}}$)². Take $m_1 = 3^{\frac{1}{2}}$, $n_1 = 2^{\frac{1}{2}}$. Than,

$$a_1 = m_1^2 - n_1^2 = 3 - 2 = 1$$
, $b_1 = 2m_1 n_1 = 2^{\alpha = 1} .6^{\frac{1}{2}}$, $c_1 = m_1^2 + n_1^2 = 5$, $c_1^2 = c^{2^{\alpha = 1}} = 5^{2^{\alpha = 1}} <$

rad(2.3.5)=30.

2)
$$m_2 = a_1 = 1$$
, $n_2 = b_1 = 2.6^{\frac{1}{2}}$, $a_2 = 23$, $b_2 = 2^{2^{\alpha=2}}.6^{\frac{1}{2}}$, $c_2 = 5^2$, $c_2^2 = c^{2^{\alpha=2}} = 5^4 = 625 < rad(23.2.3.5) = 690$.

3)
$$m_3 = a_2 = 23$$
, $n_3 = b_2 = 2^2 \cdot 6^{\frac{1}{2}}$, $a_3 = 433$, $b_3 = 2^{\alpha = 3} \cdot 23 \cdot 6^{\frac{1}{2}}$, $c_3 = 5^{2^{\alpha = 3}}$, $c_3^2 = c^{\alpha = 3} = 5^8 = 390625 > rad(433.2.3.5) = 12990$, etc. recurrently to infinity.

Option x=y=z=2 published. [1]

§2

Final statement of the theorem (1): "For all three are relatively prime positive integers a, b, c, such that $a^x + b^y = c^z$, where x > 0, y > 0 –

in equation $a_{\infty}^2 + b_{\infty}^2 = c_{\infty}^2$ by $a_{\infty} = a_{\infty-1}^2 - b_{\infty-1}^2$, $b_{\infty} = 2a_{\infty-1}b_{\infty-1}$, $c_{\infty} = a_{\infty-1}^2 + b_{\infty-1}^2$

(endless lifting method)». (4)

§§1 foregoing, and 2 completely refuted by the ABC conjecture.

Literature

1. Reuven Tint, "On some embodiments," Pythagorean "decisions and other higher order equations "(elementary aspect), 2017. www.ferm-tint.blogspot.co.il