Технические науки

УДК 62-83: 621.313.333

Клименко Юрий Михайлович

кандидат технических наук, доцент, доцент кафедры электротехники и электромеханики Днепродзержинского государственного технического университета **Садовой Александр Валентинович** доктор технических наук, профессор, проректор по научной работе Днепродзержинского государственного технического университета

Klimenko Yuri Mikhailovich

candidate of technical Sciences, associate Professor the Department of electrical engineering and electromechanics Dneprodzerzhinsk state technical University **Sadovoy Alexander Valentinovich** doctor of technical Sciences, Professor, Vicerector on scientific work Dneprodzerzhinsk state technical University

СИНТЕЗ СИСТЕМЫ ПОЛЕОРИЕНТИРОВАННОГО УПРАВЛЕНИЯ АСИНХРОННЫМ ЭЛЕКТРОПРИВОДОМ С ДЕМПФИРОВАНИЕМ КОЛЕБАНИЙ УПРУГОГО ПЕРЕДАТОЧНОГО УСТРОЙСТВА

SYNTHESIS OF FIELD-ORIENTED CONTROL OF ASYNCHRONOUS ELECTRIC DRIVE WITH DAMPING VIBRATION OF AN ELASTIC TRANSMISSION DEVICES

Аннотация: приведена методика синтеза системы разрывного полеориентированного управления асинхронным электроприводом с активным демпфированием колебаний упругого передаточного устройства.

Ключевые слова: синтез, математическая модель, передаточное устройство, регулятор, упругие колебания, демпфирование, контур регулирования, полеориентированное управление, скользящий режим.

Summary: the method of synthesis of a discontinuous field-oriented control of asynchronous electric drive with active damping vibration of an elastic transmission devices

Key words: synthesis, mathematical model, transfer device controller, elastic vibrations, damping, contour regulation, field oriented control, sliding mode.

Интенсивное развитие современных технологий и оборудования выдвигает повышенные требования к электромеханическим системам (ЭМС) точного воспроизведения сложных движений (ТВСД). К ним (CY): антенными относятся системы управления установками; радиолокационными станциями; зеркалами радиотелескопов, радиотехнических комплексов навигации, зондирования и наблюдения; устройствами специализированными военной техники. которые

International Scientific Journal http://www.inter-nauka.com/

осуществляют поиск, наведение и автосопровождение подвижных объектов. Достижение высокой надежности, требуемого pecypca длительного функционирования без профилактического обслуживания и оперативных ремонтных работ при традиционно используемых в ЭМС ТВСД электроприводах (ЭП) на основе машин постоянного тока усложнено или невозможно. По этой причине актуальным и бурно развивающимся время направлением В настоящее для большинства механизмов высококачественного управления движением является применение бесконтактных глубокорегулируемых асинхронных электроприводов (АЭП) с векторным полеориентированным управлением (ВПУ), реализуемым быстродействующими, работающими В ключевом режиме преобразователями на силовых IGBT модулях.

Сложность задач создания высококачественных АЭП для систем ТВСД усугубляется и тем, что короткозамкнутый асинхронный двигатель (КАД) как ОУ характеризуется совокупностью звеньев, накапливающих электромагнитную и механическую энергию; имеет сложную многомерную структуру с внутренними перекрестными связями (ВПС); отличается значительной нелинейностью, вызванной флуктуациями характеристик цепи намагничивания и неидеальными свойствами передаточных устройств (ПУ); обладает нестационарностью параметров В виде изменений количественных связей между ними в статических и динамических режимах работы АЭП при нагреве электродвигателя, изменениях насыщения магнитопровода и вытеснении тока; подвержен значительным возмущениям со стороны питающих электрических цепей и ПУ; выделяется сложностью прямого измерения потокосцепления и электромагнитного момента (ЭМ).

Традиционно в системах ВПУ используются П, ПИ и ПИД регуляторы, которые обладают недостаточной робастностью, плохо противодействуют изменяющимся внешним воздействиям, упругим свойствам ПУ, люфтам и нелинейному трению.

International Scientific Journal http://www.inter-nauka.com/

Изложенные особенности не позволяют при синтезе СУ АЭП использовать принципы линейной теории управления по причине резкого снижения качества управления при отклонениях параметров ОУ от расчетных, нарушения автономности каналов управления потоком и электромагнитным моментом, низкого запаса устойчивости СУ вплоть до потери ее работоспособности.

Цель работы – синтез системы ВПУ КАД с высокими требованиями к качеству отработки управляющих воздействий в режимах слежения и позиционирования, обладающей низкой чувствительностью к параметрическим и координатным возмущениям, обеспечивающей активное демпфирование колебаний упругого ПУ и устойчивую работу на основе информации от наблюдателей трудноизмеряемых координат АЭП и ПУ.

Достижение поставленной цели осуществлено путем синтеза АЭП с ВПУ в классе нелинейных систем с преднамеренно организованными в контурах регулирования (КР) многомерными скользящими режимами (МСР) при замыкании последних как по непосредственно измеренной, так и по полученной методами идентификации информации о векторах состояния АЭП, необходимой для реализации синтезированных алгоритмов управления (АУ).

Для достижения поставленной цели составим математическую модель (ММ) комплекса «КАД - ПУ с упругими свойствами», которая будет использована в качестве инструмента при синтезе и исследованиях разрабатываемых АЭП.

Анализ известных и подробно описанных в научно-технической литературе математических моделей ПУ ЭМС, построенных с учетом упруго-вязких свойств механических передач, приводит к выводу о том, что в большинстве случаев при анализе и синтезе ЭМС с повышенными требованиями к качеству управления целесообразным является использование описания ее моделью эквивалентной двухмассовой упругой

International Scientific Journal http://www.inter-nauka.com/

системы, которая несмотря на предельное упрощение, отражает физические особенности упругих ПУ с достаточной для инженерных расчетов точностью.

Математическую модель ПУ механической части ЭМС с упругими свойствами составим с учетом следующих известных допущений:

- ротор двигателя и элементы механической передачи представим в виде сосредоточенных масс, обладающих постоянными моментами инерции;
- к указанным массам приложены все силы и моменты, действующие в передаче;
- упругие связи безынерционны, невесомы, характеризуются постоянной жесткостью, т.е. коэффициентом пропорциональности между моментом (силой) и деформацией;
- диссипативные свойства ПУ учитываются силами внутреннего вязкого трения в материале валов, возникающими при их скручивании, и силами внешнего вязкого трения в опорах, которые принимаем пропорциональными угловым скоростям соответствующих валов;
- деформация упругих звеньев имеет линейный характер и подчиняется закону Гука;
- движущий момент приложен к первой массе, а его мгновенные значения M = f(t) известны и определяются расчетным путем;
- момент нагрузки приложен к выходному валу;
- волновые движения деформации и зазоры в передачах не учитываются.

В соответствии с принятыми допущениями ПУ ЭМС с наиболее распространенной на практике кинематической схемой, изображенной на рис. 1, представим в виде обобщенной двухмассовой упругодиссипативной системы, описываемой уравнениями:

$$\frac{d\phi_{1}}{dt} = \omega_{1}; \quad \frac{d\phi_{2}}{dt} = \omega_{2}; \quad J_{1}\frac{d\omega_{1}}{dt} = M - M_{12} - M_{f1};$$

$$J_{2}\frac{d\omega_{2}}{dt} = M_{12} - M_{C2} - M_{f2}; \quad M_{12} = C_{12}(\phi_{1} - \phi_{1}) + b_{12}(\omega_{1} - \omega_{2}), \quad (1)$$

где φ_{1,2}, ω_{1,2}; J_{д,1,2}; - угловые перемещения, угловые скорости, моменты инерции двигателя (д), первой (1) и второй (2) масс двухмассовой ЭМС:

$$J_1 = J_{A} + J_{A} / i^2$$
;

і - передаточное число;

M₁₂ и M_{C2}- моменты упругого взаимодействия масс и нагрузки на выходном валу;

M_{f1,2} - моменты внешнего вязкого трения:

$$M_{f_1} = \beta_1 \omega_1$$
 (πри $M_{f_{\pi}} = 0$), $M_{f_2} = \beta_2 \omega_2$ (2)

β_{1,2} - коэффициенты внешнего вязкого трения валов 1 и 2;

С₁₂ - коэффициент жесткости;

b₁₂ - коэффициент внутреннего трения в деформируемой передаче.

$$\begin{array}{c|c} \mathbf{n} \\ \hline \mathbf{n} \\ \hline \mathbf{n} \\ \hline \mathbf{n} \\ \mathbf$$

Рис.1 Кинематическая схема механической передачи ЭМС с упругостью первого рода (составлена автором)

В (1) и (2) параметры без индексов (•)' получены приведением к валу электродвигателя величин, обозначенных на кинематической схеме J'₂; ω'_{1,2}; φ'_{1,2}; C'₁₂; b'₁; M'₁₂; M'_{c2}; M'_{f, 1,2}. Приведение осуществлено методом эквивалентных преобразований [1], обеспечивающим выполнение закона сохранения энергии.

С учетом выражений (2) и базовых величин ω_{δ} и M_{δ} введем в (1) следующие обозначения:

$$T_{M1} = J_1 \omega_6 M_6^{-1}, \quad T_{M2} = J_2 \omega_6 M_6^{-1}, \quad T_C = M_6 (C_{12} \omega_6)^{-1},$$

$$k_{f1} = \beta_1 \omega_6 M_6^{-1}, \quad k_{f2} = \beta_2 \omega_6 M_6^{-1}, \quad k_c = b_{12} \omega_6 M_6^{-1}, \quad (3)$$

International Scientific Journal http://www.inter-nauka.com/

где T_{M1} , T_{M2} - механические постоянные времени сосредоточенных масс;

T_C - механическая постоянная жесткости;

k _{f1}, k _{f2}, k_c - безразмерные коэффициенты внешнего и внутреннего вязкого трения.

Представив третье - пятое уравнения системы (1) с учетом обозначений (3), получим:

$$d\omega_{1}^{\circ}/dt = (M^{\circ} - M^{\circ}_{12} - k_{f1} \omega_{1}^{\circ})/T_{M1}$$

$$d\omega_{2}^{\circ}/dt = (M^{\circ}_{12} - M^{\circ}_{c2} - k_{f2} \omega_{2}^{\circ})/T_{M2}$$

$$M^{\circ}_{12} = k_{c} (\omega_{1}^{\circ} - \omega_{2}^{\circ}) + (\phi_{1}^{\circ} - \phi_{2}^{\circ})/T_{C},$$
(4)

где: $(\bullet)^{\circ} = (\bullet)/(\bullet)_{\delta}$ - параметры в относительных единицах.

В дальнейшем индексы ° при (•) упущены.

На рис. 2 представлена структурная схема нормированной системы уравнений (4), применяемая многими авторами при синтезе СУ и приводящая к алгоритмам, построенным на использовании операций дифференцирования. Для получения алгоритмов управления (АУ) с простой практической реализацией упростим модель (4), представив ее в пространстве состояний. С этой целью продифференцируем уравнение для вычисления M₁₂ из (4) при постоянстве параметров T_c, k_c и запишем результат с учетом уравнений (1)

$$M_{12}/dt = C_{12}(\omega_1 - \omega_2) + b_{12}(d\omega_1/dt - d\omega_2/dt)$$

$$M \xrightarrow{M_{12}} \underbrace{1}_{M_{r_1}} \underbrace{1}_{M_{r_1}} \underbrace{1}_{T_{cP}} \underbrace{1}_{T_{cP}} \underbrace{1}_{M_{r_2}} \underbrace{1}_{T_{M_2}} \underbrace{1}_{T_$$

Рис. 2. Структурная схема упрощенной модели двухмассовой ЭМС (составлена автором)

Подставим первое и второе уравнения системы (4) в выражение (5) и запишем полученный результат совместно с первым и вторым уравнениями системы (4):

$$\frac{d\omega_{1}}{dt} = (M - M_{12} - k_{f1}\omega_{1})/T_{M1}; \qquad \frac{d\omega_{2}}{dt} = (M_{12} - M_{C2} - k_{f2}\omega_{2})/T_{M2};
\frac{dM_{12}}{dt} = (T_{c}^{-1} - k_{c} k_{f1}T_{M1}^{-1})\omega_{1} - (T_{c}^{-1} - k_{c} k_{f2}T_{M2}^{-1})\omega_{2} + k_{c}T_{M1}^{-1}M - (6)
- k_{c}(T_{M1} + T_{M2})T_{M1}^{-1}T_{M2}^{-1}M_{12} + k_{c}T_{M2}^{-1}M_{c} ,
M - электромагнитный момент КАД$$

$$\mathbf{M} = \mathbf{C}_1 \Psi_{\mathbf{A}}^{\mathbf{0}} \mathbf{i}_{\mathbf{SV},} \tag{7}$$

где C_1 =m $Z_p / 2$; m, Z_p - числа фаз и пар полюсов КАД.

где

Полученная нормированная модель ПУ механической части ЭМС с упругостью первого рода описывает динамические процессы в упругой передаче с учетом диссипативных сил. Уровень информативности полученной модели позволяет использовать ее при анализе и синтезе АУ с активным демпфированием колебаний упругих ПУ, наблюдателя координат (НК) КАД и упругого ПУ при их совместной работе.

Для синтеза алгоритмов ВПУ, обеспечивающих активное демпфирование колебаний в АЭП с упругими ПУ, в качестве расчетной используем математическую модель (6), дополнив ее дифференциальным уравнением для вычисления электромагнитного момента. Указанное уравнение получим путем дифференцирования выражения (7) при Ψ^{o}_{A} =const, C1=const и выполнении условий ориентации координатного базиса по вектору Ψ^{o}_{A} : $\Psi^{o}_{u} = \Psi^{o}_{A}$, Ψ_{v} =0, $d\Psi_{v}/dt$ =0.

$$d M/dt \equiv C_m d i_{sv}/dt , \qquad (8)$$

где $C_m = C1 \cdot \Psi^o{}_A$ при $\Psi^o{}_A = const - постоянный коэффициент.$

Используя третье уравнение системы (20) [2, с.521]

$$\frac{\mathrm{d}\mathbf{I}_{\mathrm{sv}}}{\mathrm{d}t} = -\mathbf{C}4\mathbf{I}_{\mathrm{sv}} + \frac{1}{\mathbf{L}_{\mathrm{s}}}\mathbf{U}_{\mathrm{sv}} + \frac{\omega_{1}}{\mathbf{L}_{\mathrm{s}}}(\mathbf{C}2\mathbf{I}_{\mathrm{su}} - \Psi_{\mathrm{A}}^{\mathrm{o}}) - \omega_{\Psi_{\mathrm{A}}^{\mathrm{o}}}\mathbf{I}_{\mathrm{su}}, \qquad (9)$$

соотношение (8) и равенство $M = C_m i_{sv}$ получим:

$$dM/dt = -C4M + C_m U_{sy}/L'_s + C_m (C2 L'_s^{-1} \omega_1 - \omega_{\Psi_0}) i_{su} - C_m \omega_1 L'_s^{-1} \Psi_A^{\circ}, \quad (10)$$

где C₂ = (1-a)L_m; C4 = 1-C₅/L'_s; C5 = aL_m-L²_m L⁻¹_r.

Записав совместно (6) и (10), получим расчетную ММ в развернутой векторно-матричной форме записи:

$$\frac{d}{dt}\begin{bmatrix} \omega_{2} \\ M_{12} \\ M_{\omega_{2}} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ 0 & 0 & a_{33} & a_{34} \\ 0 & a_{42} & a_{43} & a_{44} \end{bmatrix} \begin{bmatrix} \omega_{2} \\ M_{12} \\ M_{\omega_{1}} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ b_{2} \\ 0 \end{bmatrix} U_{sv} + \begin{bmatrix} \mu_{1} \\ \mu_{2} \\ 0 \\ 0 \end{bmatrix} M_{c2} + \begin{bmatrix} 0 \\ 0 \\ \mu_{3} \\ 0 \end{bmatrix}, \quad (11)$$

где a_{11} = - k_{f2} / T_{M2} ; a_{12} = 1/ T_{M2} ; a_{21} = -1/ $T_c + k_c k_{f2} / T_{M2}$; a_{22} = - $k_c (T_{M1} + T_{M2}) / T_{M1} T_{M2}$; a_{24} = -1/ $T_c + k_c k_{f1} / T_{M1}$; a_{33} = - C_mC4 ; a_{42} = -1/ T_{M1} ; a_{34} =

 $= C_{m} L'_{s}^{-1} (C2i_{su} - \Psi_{A}^{\circ}); \quad a_{43} = 1 / T_{M1}; \quad a_{44} = -k_{f1} / T_{M1}; \quad b_{2} = C_{m} / L'_{s}; \quad \mu_{1} = -1 / T_{M2};$; $\mu_{2} = k_{c} / T_{M2}; \quad \mu_{3} = -C_{m} \omega_{\Psi_{0}} i_{su}.$

Математическая модель (11) и соответствующая ей структурная схема (рис.3) отражают многомерность, нелинейный характер и динамическую взаимосвязь электромагнитных, электромеханических параметров, управляющих и возмущающих воздействий в ЭМС рассматриваемой структуры. Однако структурная и параметрическая избыточность такой математической модели затрудняет использование ее при синтезе СУ с минимальным количеством контурных регуляторов и сложностью информационно - датчиковой системы.

Рис.3. Структурная схема исходной математической модели (11) АЭП с ВПУ и упругим ПУ (составлена автором).

Упрощение модели и понижение ее порядка осуществим с использованием модального метода редуцирования [3, c.65÷70], предусматривающего выделение доминирующих координат X_I,

непосредственное управление которыми определяет требуемые динамические характеристики, и не доминирующих X_{II}, которые можно свести к возмущающим воздействиям, компенсируемым контурными регуляторами координат Z_I.

Вектор состояния системы X «неособым» преобразованием Z = TX, det T≠0 преобразуем в новый координатный базис векторов Z модальных координат [4]:

d

$$Z(t) / dt = TAT^{-1} Z(t) + TB U(t) + T\mu, \quad Y = CT^{-1}Z(t), \quad (12)$$

Обозначив ТАТ⁻¹ = Λ ; T = V; T μ = m; CT⁻¹=C , представим (12) в "новом" координатном базисе:

d

$$Z(t)/dt = \Lambda X(t) + VBU(t) + m, Y = C Z(t).$$
(13)

С учетом разбивки на группы координат Z_I и Z_{II} представим (13) в развернутой форме:

$$\frac{\mathrm{d}}{\mathrm{dt}} \begin{bmatrix} Z_{\mathrm{I}} \\ Z_{\mathrm{II}} \end{bmatrix} = \begin{bmatrix} \Lambda_{1} & 0 \\ 0 & \Lambda_{2} \end{bmatrix} \begin{bmatrix} Z_{\mathrm{I}} \\ Z_{\mathrm{II}} \end{bmatrix} + \begin{bmatrix} V_{1} & V_{2} \\ V_{3} & V_{4} \end{bmatrix} \begin{bmatrix} B_{1} \\ 0 \end{bmatrix} U + \begin{bmatrix} m_{1} \\ m_{2} \end{bmatrix}.$$
(14)

Редуцирование порядка при этом сведем к исключению дифференциального уравнения вычисления Z_{II}. Выбор преобразующих матриц в (14) осуществлен таким образом, чтобы кроме устранения

$$\frac{d}{dt} \begin{bmatrix} Z_1 \\ Z_2 \\ Z_3 \end{bmatrix} = \begin{bmatrix} \lambda_{11} & \lambda_{12} & 0 \\ 0 & \lambda_{22} & \lambda_{23} \\ 0 & 0 & \lambda_{33} \end{bmatrix} \begin{bmatrix} Z_1 \\ Z_2 \\ Z_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ b_3 \end{bmatrix} U + \begin{bmatrix} \mu_{01} \\ \mu_{02} \\ \mu_{03} \end{bmatrix} , \qquad (15)$$

взаимосвязи координат Z_I и Z_{II}, получить матрицу Λ_I коэффициентов Z_I с верхнетреугольной формой:

где $\lambda_{11} = a_{21}$; $\lambda_{12} = a_{12}a_{21}(a_{11})^{-1}$; $\lambda_{22} = a_{33}a_{42}(a_{43})^{-1}$; $\lambda_{23} = a_{42}^2a_{33}(a_{43})^{-1}$ $^1(a_{24}(a_{44})^{-1} - a_{23}(a_{43})^{-1})(a_{22} - a_{12}a_{21}(a_{11})^{-1} - a_{23}a_{42}(a_{43})^{-1})^{-1}$; $\lambda_{33} = a_{42}(a_{34}(a_{44})^{-1} - a_{33}(a_{43})^{-1} - \lambda_{23}$ Выбор формы представления редуцированной модели в виде (15) позволяет синтезировать алгоритмы ВПУ и технически просто реализуемые структуры систем управления.

Используя концепцию Ляпунова о возмущенном - невозмущенном движении [5], представим (15) в фазовом пространстве координат возмущенного движения, переход к которому позволяет исключить из рассмотрения возмущающие воздействия µ:

$$\frac{d\eta_{1}}{dt} = \lambda_{11}\eta_{1} + \lambda_{12}\eta_{2} ; \quad \frac{d\eta_{2}}{dt} = \lambda_{22}\eta_{2} + \lambda_{23}\eta_{3} \\
\frac{d\eta_{3}}{dt} = \lambda_{33}\eta_{3} + b_{3}U_{sv}^{\Delta} ,$$
(16)

где $\eta_i = Z_i - Z_i^*$, i=1,2,3 - координаты возмущенного движения; Z_i и Z_i^* - значения истинных и программно-заданных координат; $U_{sv}^{\Delta} = U_{sv} - U_{sv}^*$ - дополнительное управление, однозначно оп-

ределяемое компонентами векторов η_i.

Задача синтеза сводится к выбору ограниченных по модулю управляющих воздействий, обеспечивающих минимум интегральных критериев качества, задаваемых для каждого из контурных регуляторов в виде функционалов [5]:

$$J_{1} = \int_{0}^{\infty} \left[V_{01}^{(1)} \eta_{1}^{2} + V_{02}^{(1)} \eta_{1} \eta_{2} + V_{03}^{(1)} \eta_{1} \eta_{3} + \left| V_{13}^{(1)} \eta_{1} + V_{23}^{(1)} \eta_{2} + V_{33}^{(1)} \eta_{3} \right| \right] dt$$

$$J_{2} = \int_{0}^{\infty} \left[V_{02}^{(2)} \eta_{1} \eta_{2} + V_{03}^{(2)} \eta_{1} \eta_{3} + \left| V_{23}^{(2)} \eta_{2} + V_{33}^{(2)} \eta_{3} \right| \right] dt$$

$$J_{3} = \int_{0}^{\infty} \left[V_{03}^{(3)} \eta_{1} \eta_{3} + \left| V_{33}^{(3)} \eta_{3} \right| \right] dt , \qquad (17)$$

где $V_{01}=V_{03}V_{13}/V_{33}$, $V_{02}=V_{03}V_{23}/V_{33}$, $V_{03}=-\lambda_{11}\lambda_{22}\lambda_{33}$ - весовые коэффициенты.

Минимизация функционалов (17) гарантирует апериодический характер переходных процессов с минимально возможной для данных параметров и ограничений управляющих воздействий постоянной времени. Коэффициенты функционалов (17) определим в соответствии с функцией А.М. Ляпунова, выбранной в виде:

$$\mathbf{V} = \sum_{i,k=0}^{3} \mathbf{V}_{ik}^{(j)} \boldsymbol{\eta}_{i} \boldsymbol{\eta}_{k} , \quad \mathbf{V}_{ik}^{(j)} = \mathbf{V}_{ki}^{(j)} , \qquad (18)$$

где J=1,2,3 – индексы переменных ω₂, M₁₂ и M, управляемых регуляторами P1, P2 и P3.

Оптимальные управляющие воздействия на выходах регуляторов сформируем в виде:

$$U^{(pj)} = -U_{pj} \operatorname{sgn} S^{(j)}, \quad S^{(j)} = b_3 \frac{\partial V^{(j)}}{\partial \eta_i} = 2b_3 (V_{13}^{(j)} \eta_1 + V_{23}^{(j)} \eta_2 + V_{33}^{(j)} \eta_3) \quad , \quad (19)$$

где U_{pi} – амплитуда напряжения релейного элемента;

U^{(рј)-} напряжение на выходе регулятора координаты ј.

Определим коэффициенты функций А.М.Ляпунова, входящие в АУ (19):

для Р1
$$V_{13}^{(1)} = \lambda_{22} \lambda_{33}, V_{23}^{(1)} = -\lambda_{12} \lambda_{33}, V_{33}^{(1)} = \lambda_{12} \lambda_{23};$$

для Р2 $V_{13}^{(2)} = 0, V_{23}^{(2)} = -\lambda_{11} \lambda_{33}, V_{33}^{(2)} = \lambda_{11} \lambda_{23}$ (20)
для Р3 $V_{13}^{(3)} = 0, V_{23}^{(3)} = 0, V_{33}^{(3)} = -\lambda_{11} \lambda_{22}.$

В соответствии с (20) алгоритмы (19) представим в виде:

или после перехода в исходный координатный базис фазового пространства отклонений систему (21) запишем в виде

$$\begin{split} U^{(p1)} &= -U_{p1} \operatorname{sgn}[(\omega_{2} - \omega_{2}^{*}) + Z_{1y}(M_{12} - M_{12}^{*}) + Z_{2y}(M - M^{*})] \\ U^{(p2)} &= -U_{p2} \operatorname{sgn}[(M_{12} - M_{12}^{*}) + Z_{3y}(M - M^{*})], \\ U^{(p3)} &= -U_{p3} \operatorname{sgn}(M - M^{*}) \end{split} \right\}, \quad (22) \\ \Gamma \mathcal{I}e \ \ Z_{1y} &= -\frac{L'_{s}}{R_{s}} \cdot \left(\frac{b_{12}}{J_{2}} - \frac{C_{12}}{\beta_{2}}\right), \qquad Z_{2y} &= \left(\frac{b_{12}}{J_{2}} - \frac{C_{12}}{\beta_{2}}\right) \cdot \left(\frac{b_{12} \cdot (J_{1} - J_{2})}{J_{1} J_{2}} + \frac{C_{12}}{\beta_{2}}\right), \\ Z_{3y} &= \frac{R_{s} C_{12}}{L'_{s} \beta_{2}} \cdot \left(\frac{b_{12} (J_{1} - J_{2})}{J_{1} J_{2}} + \frac{C_{12}}{\beta_{2}}\right) \end{split}$$

На рис. 4 представлена функциональная схема системы ВПУ [7], в которой реализованы АУ (22). В состав схемы входят: контур управления потоком; контуры управления с релейными регуляторами Р1, Р2, Р3, осуществляющими управление координатами механического движения и активное демпфирование упругих колебаний УПУ; наблюдатель координат

Рис.4. Функциональная схема системы ВПУ КАД с активным демпфированием упругих колебаний УПУ по АУ (22)

асинхронного двигателя и упругого передаточного устройства НК АД УПУ; типовые для систем ВПУ преобразователи координат ПК1-ПК3; контур формирования фазных токов КФФТ с преобразователем на силовых транзисторных модулях ПСТМ, датчиками ДФТ и релейными регуляторами фазных токов РФТ; вычислитель «эквивалентного» управления ВЭУ, обеспечивающий МСР в СУ; короткозамкнутый асинхронный двигатель М с тахогенератором ДС на валу, упругим передаточным устройством УПУ и датчиком положения ДП2 на выходном валу.

Наблюдатели координат НК АД и УПУ синтезированы и исследованы авторами в [6, с 358÷360].

Организация МСР в системе управления осуществлена на основе «эквивалентного» управления [7, c.82÷89], применения метода позволяющего разделить разнотемповые движения BO внешних И внутренних контурах управления путем включения между ними выделителя ВЭУ «эквивалентного» управления, выполненного в виде двухканальной, замкнутой по сигналам на ее выходах, модели контура тока, содержащей релейные регуляторы активного и реактивного тока, модели вычисления тока с параметрами управляемого КАД.

Результаты моделирования синтезированных АУ (22) при ОКБ по $|\Psi_r|$ для режима слежения представлены на рис. 5. Графики изменений задающего воздействия $\omega_2^*(t) = \omega_{HOM} \cos 8t$, координат $\omega_1(t)$, $\omega_2(t)$, $M_c(t)$, $M_y(t)$, M(t), $\varepsilon(t) = \omega_2^*(t) - \omega_2(t)$, при $|\Psi_r| = \cosh t$, $|\Psi_r|(t)$, $i_{su}(t)$, $\Psi_r_{\alpha,\beta}(t)$, $i_{s-\alpha,\beta}(t)$, приведены для режимов: возбуждения машины до уровня Ψ_{r-HOM} . (0÷t₁); работы с (0÷t₄) при $M_c = 0$ (0÷t₂), $M_c = -M_{HOM}$ (t₂÷t₃), $M_c = M_{HOM}$ (t₃÷t₄); отработки задающего воздействия $\omega_2^*(t) = \omega_{HOM} \cos 8t$ при $M_c = M_{HOM}$ (t₃÷t₅), при $M_c = -M_{HOM}$ (t₅÷t₆), $M_c = 0$ (t₆÷t).

Для наглядности изображений на рис.5 сигналы $\omega_{2,}(\omega_1)$ и ω^*_2 показаны в разных масштабах.

С целью оценки чувствительности скоростной подсистемы с АУ (22) к неточности задания при расчете или изменениям в процессе эксплуатации коэффициента жесткости C_{π} и момента инерции J_2 проведены исследования ошибок регулирования $\varepsilon(t) = \omega_2^*(t) - \omega_2(t)$ для режимов: работы с $\omega_2^*(t) = 0$ (0÷t₃) при $M_c=0$ (0÷t₁), $M_c=-M_{HOM}$ (t₁÷t₂), $M_c=M_{HOM}$ (t₂÷t₃);

отработки задающего воздействия $\omega_2^*(t) = \omega_{\text{ном}} \cos 8t$ при $M_c = M_{\text{ном}} (t_3 \div t_4)$, при $M_c = -M_{\text{ном}} (t_4 \div t_5)$, $M_c = 0 (t_5 \div t)$.

На рис.6 представлены результаты исследования ошибок $\varepsilon(t)$, полуполученные для случаев $\varepsilon_0(t)$ - при расчетных значениях $C_{\mathcal{K}}^{\text{расч.}}$, $J_2^{\text{расч.}}$; $\varepsilon_1(t)$ - при $C_{\mathcal{K}} = 0.5 C_{\mathcal{E}}^{\delta a \tilde{h} \div}$ и $J_2^{\text{расч.}}$; $\varepsilon_2(t)$ - при $C_{\mathcal{K}} = 1.5 C_{\mathcal{E}}^{\delta a \tilde{h} \div}$ и $J_2^{\text{расч.}}$; $\varepsilon_3(t)$ - при $J_2 = 0.5$ $J_2^{\text{расч.}}$ и $C_{\mathcal{K}}^{\delta a \tilde{h} \div}$; $\varepsilon_4(t)$ - при $J_2 = 1.5 J_2^{\text{расч.}}$ и $C_{\mathcal{K}}^{\delta a \tilde{h} \div}$. Величины ошибок не превышают значений $\pm 5\%$.

Рис.5. Результаты моделирования системы ВПУ АЭП с АУ (22) (получены авторами)

Выводы. Синтезированная система полеориентированного управления АД с активным демпфированием колебаний упругого передаточного устройства по алгоритмам (22) с регуляторами скорости, электромагнитногомомента АД и упругого момента ПУ при работе с МСР, организованны-

Рис.6 Результаты моделирования чувствительности ЭМС управления скоростью с АУ (22) к изменениям С_ж и J₂ от расчетных (получены авторами).

ми на основе информации от наблюдателей координат АД и УПУ, реализованных в виде работающих в реальном масштабе времени прямых замкнутых динамических моделей КАД и УПУ, снабженных работающими в скользящем режиме контурами слежения, обеспечивает высококачественное управление АЭП, активное демпфирование упругих колебаний УПУ при низкой чувствительности к параметрическим и координатным возмущениям. Разработанная СУ АЭП удовлетворяет высоким требованиям, предъявляемым к ЭМС ТВСД.

Список литературы

1. Ключев В.И. Теория электропривода: Учебник для вузов -М.: Энергоиз-дат, 1985.-560 с.

2. Клименко Ю.М. Математическая модель асинхронного двигателя и синтез алгоритмов полеориентированного управления на ее

основе // Юбилейный сборник научно-технических трудов ДГТУ, Днепродзер-жинск, 1995. – с.518 ÷ 527.

3. Афанасьев В.Н., Неусыпин К.А. Метод построения редуцированных моделей - Автоматика и телемеханика, 1991. № 6, с.65-70..144.

4. Воронов А.А. Введение в динамику сложных управляемых систем. - М.:Наука, 1985. - 352с.

5. Системы оптимального управления прецизионными электроприводами/Садовой А.В., Сухинин Б.В., Сохина Ю.В.: Под ред.А.В.Садового. - К.: ИСИМО, 1996 - 286 с.,ил.

6. Клименко Ю.М., Садовой А.В., Клименко Ю.Ю. Наблюдатели координат короткозамкнутого асинхронного двигателя и упругого передаточного устройства // Сборник научных трудов Днепродзержинского государственного технического университета (технические науки). Тематический выпуск « Проблемы автоматизированного электропривода. Теория и практика» / Днепродзержинск: ДДТУ, 2007.-с 358÷360.

7. Клименко Ю.М. Разработка и исследование асинхронных электроприводов с векторным полеориентированным управлением, многомерными скользящими режимами и идентификацией координат. Дис.канд. техн. наук. Одесса, - 2007. -185 с.