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MATEMATHUYECKOW TEOPUU HETOHKHUX MOJIOTUX
OBOJIOYEK

METHOD OF SOLUTION EQUATION SYSTEM WITHIN THE
VARIANT OF MATHEMATICAL THEORY OF NON-THIN SHALLOW
SHELLS

Anomauia: B cmammi 3anpononosano memoo, [aKuil 0ae MOMCTUBICMb
36ecmit po38 sA3Y8ANbHY CUCHEM) HEeOOHOPIOHUX OughepeHyialbHux pieHsaHb 13
YACMUHHUMU NOXIOHUMU UWICMHAOYAMO20 NOPAOKY 8apiaHma MamemamuyHoi

meopii He MOHKUX NOA02UX 0OO0JOHOK 00 OuepeHyialbHux pieHsAHb OpPye0co i
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yemeepmoz0 NopsaoKie. Buxopucmogyemuvcsi memoo 30ypeHb 2eoMempudHux
napamempig i onepamopHuil Memoo.

Knwuoei cnosa: eapianm mamemamuuHoi meopii, He MOHKA NoJl02A
000110HKA, cucmema HeoOHOPIOHUX OupepeHyialbHuUX pPieHAHb 13 YACTMUHHUMU

NOXIOHUMU, MemOo0 30YpeHb, onepamop.

Annomayun: B cmamve npednodicen Memood, Komopuli Oaem
B03MOJNCHOCMb — NPUBECMU  pPA3pewanwylo  cucmemy  HeOOHOPOOHbLIX
oupgepeHyuanbHbiXx  YPasHeHUll 8 YACMHBIX NPOU3BOOHBIX WECMHAOYAMO20
NOPAOKA 8aPUAHMA MAMEMAMUYECKOL Meopuu He MOHKUX NOJ02UX 00010YeK K
oupgepeHyuanbHbiM  YPAGHEHUAM  8MOPO20 U  YEemBepmo2o  NOpPSIOKOa.
Hcnonvzyemess  memoOo  803MyujeHus  2eoMempuyeckux napamempos —u
onepamopmwiii Memoo.

Knioueevie cnosa: sapuanm mamemamuyeckou meopuu, He MOHKAA
noJo2as 000104Ka, cucmema HeoOHOPOOHBIX OUuhphepenyuanbHbIX YPasHe Ul 8

YACMHBIX NPOU3BOOHBIX, MEMOO O3MYUJeHUL, ONepPamop.

Summary: In this paper, method is offered enabling reduction of
resolving system of heterogeneous partial-derivative differential equations of the
sixteenth order within the variant of mathematical theory of non-thin shallow
shells to the differential equations of the second and fourth orders. A method is
used of geometrical parameters perturbation and symbolical method.

Keywords: variant of mathematical theory, non-thin shallow shell, system
of heterogeneous partial-derivative differential equations, method of

perturbations, operator.
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Introduction. In the case of steep gradient of the stress-strain state (SSS)
variation, classical theories of thin and non-thin plates and shells under
conditions of local loads, existence of holes and sharp variation of mechanical
and geometrical parameters provide unsatisfactory results, which could
substantially differ from exact ones. Non-classical theories based on various
hypotheses and assumptions for the very large class of boundary problems are
also basically unable to describe SSS of plates and shells with any high
accuracy, since SSS components are represented as a small number of
summands. In addition, obtained differential equation (DE) systems are of low
order. Studies on various theories are reviewed in [1, P.3-32; 2, P. 22-57].

Approach offered in [3, P. 51-58] for calculation of plate under the skew-
symmetric loading in the first two approximations was generalized by author in
a number of studies for the physically linear and nonlinear, solid and laminated
non-thin plates and shallow shells (reviewed in [4, P. 21-30]). The developed
variant of mathematical theory of non-thin elastic plates and shallow shells [4, P.
21-30] is based on 1) representation of all SSS components as three-dimensional
functions represented by the Legendre polinomials series depending on the
transverse coordinate and satisfying exactly to the boundary conditions on the
face planes (surfaces); 2) the use of the variational Reissner’s principle [5, P. 90-
95] for reduction of three-dimensional boundary problem for plates and shells of
arbitrary constant thickness to two-dimensional one; 3) the use of coupled
equations. As a result, boundary problem is reduced to the solution of the
heterogeneous partial-derivative differential equation (DE) system with respect
to constituents of motion components. The DE system order and boundary
problem solution accuracy are determined by the number of terms retained in
series.

The point to be emphasized is that SSS components presentation as series
basically enables its determination with any high accuracy. However, that results

in increased mathematical complexity, since order of the partial-derivative DE
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systems is increased with respect to the sought-for functions. Consequently, a
need arises in development of mathematical methods of high order
heterogeneous DE systems reduction to low order equations, in particular, to
second and fourth order equations.

1. Problem formulation. From the perspective of three-dimensional
elasticity theory, transversely isotropic shallow bicurved shell of arbitrary

constant thickness h is considered in the Cartesian coordinate system Oxyz . Oz

axis, of which origin is in the median shell surface, is directed toward its
convexity. Skew-symmetric loading is applied to the shell. Boundary conditions
on the face surfaces are as follows:

o,(z=xth/2)=Fq(x,¥)/2; o,,(z=%h/2)=0,(z=+h/2)=0,

where q(X, y) — transverse loading intensity.

Boundary conditions on the lateral surface, which is assumed to be
normal to the median shell surface, can be specified in stresses, motions or in
stresses and motions (mixed problem).

The next two paragraphs provide outline of basic relationships and
equations of the considered variant of mathematical theory previously obtained
by author.

2. Approximation of SSS components. Constituents of motion

components U(Xx,Yy,2), V(X,V¥,z), W(x,y,z) are represented by series with the

use of the Legendre polinomials:

U(x.y.2)= 3R (%)uk (%, ¥) (U VU)W (X, y,2) = kz Pk_l(z—hz>wk xy). ()

k=0

where B, (2z/h)- Legendre polinomials, u, (x,y), v, (X,¥), W, (x,y) -

sought-for constituents of motion components.
For the transversely isotropic non-thin shallow shell, of which isotropy

plane is parallel to the xO y plane at each point of space, dependencies between

strains and motions are represented as the following series:
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Ex = ngj , (X, ), &= Zgzj » Vyx = Zyyxj Ve = zyxzjv (X ¥), (2)
j=0 j=1 j=0 j=1
where
ou; (X,
£i(%,Y,2) =P, (%+ kW, (X, y)], (X, y;u—>v;k; > k,);

auj (X1 y) n 6\/] (X’ y)]

& (% Y, 2) = Pywy (% Y); 7y (XY, 2) = Pj[ oy o ,

Yxej(X%: ¥, 2) =P, +PU; (% y) —kiPu;(x,y), (X, y;u—=>viki >kj);

aWj+l(X! y)
OX J
(X, ;U >V; ki =k3), (k =1/R,, ki =k;, 1=1,2; k,, =k, +k,v;
K,, =K, +KkV).
Here k,, k, are principal curvatures, and R;, R, are main curvature radii of
median shell surface. Since the shell is non-thin one, expressions for the
transverse angular strains y,,, 7,, take into account the tangential displacement

components by means of summands containing k{ and k;, (these are ignored in

classical theory).

Stresses in shell are also represented as series:

0o (% Y,2) =Y Pty 0,00 Y,2) =3 Pt,, 0,(6y,2) =3 Ps,; (3)
i=0 i=0 i=0

oy (%¥,2) = 2B, (o, >0y S —>Syi); oy (X Y,2) =2 Bty,,
i=0 i=0

where t,,...,t,; depend on u(X,y), V(X Y), W(XYy) u and their
derivatives [4, P.21-30].

If we assume curvatures k; and k,, k; and k; in (2) and (3) to be equal to
zero, we obtain respective dependencies for plate.

3. Initial differential equation system and its transformation. Let us
consider the skew-symmetric transverse loading as the approximation k =0,1,3

(constituents with subscripts 0, 1, 3, i.e. Uy, Uy, Us; Vo, Vy, V5, are only taken into
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account in series (1) for tangential components of motion U(x,y,z) and
V(x,y,2); then constituents w, and w, are only taken into account for the
transverse motion W(X,Y,z)). Resolving equations are represented by the
following heterogeneous partial-derivative DE system [6, P. 131-139]:
Y11Mo,xx T 71180,y + 7121V0 xy + Kiwa Wi x + KiwgWa x = 0; (4)
Y12U0,xy T 7112V0 3¢ T 711V0,yy T Kowa Wy +KongWs y =0;
Bridh + Bl + By + Bty + BiaPax + BisWix + BieWa x = Bl
Biis + BraNs + By — Butix T Piai®sy + BistWiy + BreWsy = Bud,ys
Briahs + Bazls + BiaiPi x + Pasi®Pax + PasWay + PasiWix + PasiWa x = Bzl

DPray + BaaVa + Biaipry + BaaiPay — Pastax + PasWoy + BaeWa y = B30,y5
KyoqUg « + KotV v + B 1t + BaciPs + (Bec V2 + Ly W, + (BeciV: + 60 )Ws = .40
1malo, x T KowaVo,y + P151P1 + P35103 551 AL 561 w3)Ws = Dyadl;

KywsUo x + KowaVo y + Bres?s + PaerPs + (BseV> + Mus) Wy +
+(BooV” + Boss + Faws)Ws = Busl
where @ (X, ¥)=U; , +Vi s wi(XY)=U;, =V, V2 — Laplacian operator,
v, B, K,r with subscripts are mechanical and geometrical parameters (MGPS)
determined by mechanical and geometrical shell constants. Please note that
subscripted » and g constants are independent of curvature, i.e., the same as
those for plate. Curvatures are only included in subscripted k and r MGPs.
Therefore, if we assume the latter to be equal to zero, then the system (4)
represents the resolving equations for the transversely isotropic plates (first two

equations describe the flat problem, and last six ones describe problem of
bending).

System (4) is reduced to two systems by means of mathematical
transformations.
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One of systems, namely, homogeneous fourth order system with respect

to two vortex functions y,(X,y) and y;(x,y), describes a vortex edge effect
(equations for plates are similar ones):

Bris¥y + Priy Vows + Biasws =0,

PrasWy+ Bazo Vs + Bagaws =0,

Other system, namely, twelfth order coupled heterogeneous DE system

()

with respect to u,, vy, Wy, Wy constituents (let us denote these as basic ones),
describes internal SSS with the potential edge effect:

PyyoUo + PyoVo + PiygWy + PygWs = P g, (1 =1, 2, 3, 4), (6)
where subscripted P — differential operators containing MGP. The other

constituents of motion components are represented through the basic

constituents from the third—sixth equations, in which ¢, (x,y) and ¢,(x,y) are

expressed from seventh—eighth equations.
4. Method of perturbations. Resolving equations. We offer the method
allowing reducing of mathematical complexities of solution of main equations

(5) and (6). Let us introduce small parameter ¢ =h/(R, + R,). Then subscripted

k and r MGPs are represented as follows:
Kina = Kiwa &1 King = Kiyg & Kog = Ko&s Koyg = Kpys &, (7)
2 2 2
Nt = Ruwn€”s s = Rungé”) Taus = Raugs™
where K,,,...,Rs,3 are final constant values independent of parameter ¢ .

The solution of the homogeneous DE system (5) is not difficult. It is
reduced to the solution of two Helmholtz equations.

We solve the system (6) by the method of perturbations of geometrical
shell parameters followed by the use of operator method for the solution of the
obtained equations in every approximation.

We represent basic constituents of motion components as series in terms

of the small geometrical parameter ¢.
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U (%, ¥) = ze Ui (% ¥), (U,V); Wy(x,y) = ze Wy (%, Y), W, W), (8)

where Uy; (X, Y), Voi (X, ¥), Wy; (X, ¥), Ws; (X, y) —sought-for functions.

Constituents of stress components, other constituents of motion
components and lateral surface boundary conditions are also expanded into
similar series (8).

By the asymptotic splitting of the DE system (6) taking into account (7)
and (8), we obtain following two DE systems with respect to ug;,v, and
Wi Wa; -

In the zero-order approximation:
homogeneous system of 4™ order

MyyUge + My,Vgo =0;

(9)
M Ugo + M,V =0
and heterogeneous system of 8" order
IL Wy + I 3Wy = 11,40 (10)

II5\Wyg + I133W50 = [15,0,
where My,,...,M,,, I, I1;,— known differential operators of 2" order;
I, ,...,IT,; — those of 4" order.
In the subsequent approximations (i=12,...), we also obtain two

systems:

heterogeneous system of 4™ order

MUgi + MyoVoi = Qg

(11)
MU + My,Vei = Qyiy
and heterogeneous system of 8" order
I1y Wy + 11 3Wa; = By (12)

TI5 Wy + TTg5Wa; = Py iy
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Right-hand sides of equations (11) depend on the solutions of previous

(i —1) ™ approximation of the system (12), and right-hand sides of equations (12)
depend on the solutions of previous (i —1)"™ approximation of the system (11)
and the solutions of (i —2) " approximation of the system (12).

The system (9) corresponds to the flat problem of elasticity theory for
plate, and (10) corresponds to the problem of plate bending. Systems (11) and
(12) specify the solutions of flat problem and problem of bending, respectively.

When using this method of perturbations, lateral surface boundary
conditions in the zero-order approximation would be generally heterogeneous,
and would be homogeneous in the subsequent approximations.

So, boundary problem for non-thin transversely isotropic shell in the

considered approximation (k =0,1,3) is reduced by the method of perturbations

to the following resolving equations: homogeneous and heterogeneous systems
of 4™ order and two heterogeneous systems of 8" order.

5. Reduction of the systems (9) — (12) to equations of 2" and 4™
orders. Let us consider the heterogeneous system of 8" order (systems of (10)
and (12) type). These systems are structurally similar and only differ in right-
hand sides. For convenience, we write the system of (10) (or (12)) type as
follows:

T Wy + TT Wy = £

(13)
IIWy + I3w; = 1,

where f, = f,(x,y), f; = f;(x, y) — known functions.
The system of (13) type is reduced by the operator method to following
two heterogeneous DE of 8" order
D,D,D;D, F (X, y¥) = i (Xx,y) (i=13), (14)

where D, — differential operators of 2" order:

D, =V? D,=V? D,=(V®-a,), D,=(V*-a,). (15)
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Here a;,a, — some constants being roots of characteristic equation (these can be

complex ones).
The general solution of the system (13) is expressed through the general

solution F, (x,y) of the homogeneous equation corresponding to (14) and two
partial solutions F, (X, y) and F;, (X, y) of heterogeneous equations (14):
Wy (X, Y) =I5 (Fyo + Ry ) =110 gF5 5 Wa(X,y) = =115 (Fyo + Fy ) +1135F5,,  (16)
where
Fio(x, ¥) = Fp (6 0) + By (6, 0) + Fpp (%, ) a7)
Here F,, — general solution of bi-harmonic equation V*F,, =0, F,,, and F,
— general solutions of two differential Helmholtz equations:
(V2 —83)Fyn (% ) =0, (V2 —2,)F,(x y)=0. (18)
We then obtain partial solutions of equations (14) by operator method
through the partial solutions of heterogeneous equations of 2" and 4™ orders.
Let us consider equation of (14) type:
D,D,D;D, F(x,y) = f(X,Y), (19)
where f(x,y) —known function, and F(Xx,y) — sought-for function.

We represent partial solution F,(x,y) of equation (19) as follows:

1
F(Xy)=—— f(x,V), 20
(X, Y) b.D,D.D, (x,y) (20)

where 1/(D,D,D;D,) — inverse operator.

Then suppose F.(x,y), (i=1...,5) are partial solutions of heterogeneous

equations:
DRE(XYy)=f(xy) (i=1..4), DD,R(Xxy)=f(xY).

These solutions can be represented through inverse operators as follows

1 1
R, (X, Y):E f(xy), K, (xy)= DD
i 1D

F(xy). (21)
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We transform right-hand side of equation (20) taking into account
commutativity and associativity of operators:

1 1
D, D D,D, fouy)= (D, D3)(D2D4) f=

1 1

" (D, - D)(E_E)(D D4)(D Dz)f'

With consideration of (15), we obtain

1.1 .1 1,1 1 1 1
=—(———)—(———) (o) =
D, D’a, D, D, aa, D,D, D,D, DD, D,D,

1
~a, (D, - D)(E_E)_(D D)(F__g)_

1 1 1 1
+

1 1 1 1 1

:a3a4 (a4_a3 (D_4_33)_( 3)(3_5)__(3_5) DlDZ) )
:i(ii_ki 1 — 3.4 + a3 D4+i)f
aa, a, 0, a3 D, (8, -a)a;D; (a, —a5)a,D, D, D,

Partial solutions F,(x,y) and F, (X,y) of first two equations (21) can

differ by the arbitrary harmonic function, but since our concern is with the
arbitrary partial solution of equation (19), we can assume that

F,(X,y)=F, (X, y). Then taking (21) into consideration, we obtain the final

expression for the partial solution of equation (19):

d, +a
Fr(X’ y): L (( ° 4) Flr_LFSr"_LFM"FFSr)' (22)
a;d, a3 (a, —a3)a; (a, —a3)a,

Thus, partial solution of partial-derivative differential equation of 8"

order (19) is represented by the linear combination of partial solutions of as
follows: Poisson's equation, two heterogeneous Helmholtz equations and

heterogeneous bi-harmonic equation.
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The general solution of the system (10) (and (12) ) with consideration of
(14), (16) — (18), (22) is expressed through the general solutions of bi-harmonic
equation and two Helmholtz equations, and partial solutions of heterogeneous
bi-harmonic equation, Poisson's equation and two heterogeneous Helmholtz
equations.

The general solution of the system (9) (and (5)) is expressed through the
general solutions of two Helmholtz equations, and general solution of the system
(11) is expressed through the general solutions of two Helmholtz equations and
partial solutions of two heterogeneous Helmholtz equations.

The integration constants included in the general solution of the system
(4) at every approximation in terms of the small parameter, are defined by the
lateral surface boundary conditions.

Remark. The used operator method here is implied also by method of
differential equations [7, P. 60-66; 8, P. 154-159] order reduction.

6. On convergence of series (1) and (8). Let us formulate (without proof)
the series (1) and (8) convergence theorem.

Let us denote the closed domain of three variables x,y,z, which is
occupied by shell, as C, (x,y — tangential coordinates, z — transversal
coordinate: —h/2<z<h/2), and respective x,y variation domain as C .

Theorem 1 (about convergence of series (1)). If the functional series

iuk (x,y) is uniformly and absolutely convergent in the C, domain, then
k=0

series iPk (2z/h)u, (x,y) is also uniformly and absolutely convergent in the
k=0

C, domain.
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Theorem 2 (about convergence of series (8)). If functions uy;(x,y) are

uniformly bounded in the C, domain, then series isi Uo; (X, y) is uniformly
i=0

and absolutely convergent in this domain.

The formulated theorems are true for other series (1) and (8).

7. Conclusions. Applied equation rearrangement method, use of operator
method and method of perturbations of geometrical parameters result in
reduction of resolving heterogeneous partial-derivative differential equation
system of 16" order within the variant of mathematical non-thin transversely
isotropic shells theory to the solution of equations of the second and fourth
orders (Laplacian and Poisson's equations, homogeneous and heterogeneous
Helmholtz equations, bi-harmonic and heterogeneous bi-harmonic equations).
The offered method enables considerable simplification of solution of boundary
problems for the non-thin shallow shells and could be also extended to solution

of problems for shells in the framework of other theories.
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