Полуэктова Валентина Анатольевна

кандидат технических наук, доцент, доцент кафедры неорганической химии

Белгородский государственный технологический университет им. В.Г. Шухова

Столярова Злата Владиславовна

кандидат экономических наук, доцент, доцент кафедры теории и методологии науки

Белгородский государственный технологический университет им. В.Г. Шухова

Ломаченко Светлана Михайловна

научный сотрудник кафедры неорганической химии Белгородский государственный технологический университет им. В.Г. Шухова

Черников Роман Олегович

студент

Белгородский государственный технологический университет им. В.Г. Шухова

Poluektova V.A.

candidate of Engineering Sciences, associate professor Belgorod State Technological University named after V.G.

Stolyarova Z.V.

candidate of Economics, associate professor

Belgorod State Technological University named after V.G.

Lomachenko S.M.

researcher

Belgorod State Technological University named after V.G.

АДСОРБЦИЯ ОТЕЧЕСТВЕННОГО МОДИФИКАТОРА НА ОСНОВЕ ОТХОДОВ ПРОИЗВОДСТВА РЕЗОРЦИНА НА ПОВЕРХНОСТИ МИНЕРАЛЬНЫХ ЧАСТИЦ ADSORPTION OF DOMESTIC WASTES-BASED MODIFIER OF RESORCINOL ON THE SURFACE OF MINERAL PARTICLES

Аннотация: Представлены результаты исследований адсорбции пластифицирующей добавки на основе отходов производства резорцина на поверхности частиц $CaCO_3$, Al_2O_3 , SiO_2 . Рассчитаны адсорбционные параметры исследуемых частиц. Рассмотрен предполагаемый механизм пластифицирующего действия изучаемого модификатора.

Ключевые слова: адсорбция, адсорбционные параметры, минеральные суспензии.

Summary: The results of researches of adsorption waste paperboards production of resorcinol on the surface of the particles of CaCO₃, Al₂O₃, SiO₂ are represented. Adsorption parameters of measured particle are calculated. The proposed mechanism of action of plastificated modifier are considered.

Key words: adsorption, adsorption parameters, mineral suspensions.

Изучение влияния суперпластификатора белгородского (СБ-3), полученного путем поликонденсации отходов производства резорцина с формальдегидом, на реологические свойства цементных паст показали, что применение данной добавки значительно уменьшает предельное

динамическое напряжение сдвига и пластическую вязкость суспензий [1-3]. Однако проведение адсорбционных исследований на границе раздела «твердое тело – раствор» некорректно с цементными суспензиями в связи с происходящими процессами гидратации. Поэтому в качестве модельных систем были выбраны водные дисперсии мела и молотого мрамора (CaCO₃), кремнезема (SiO₂) и глинозема (Al₂O₃), которые не взаимодействует с водой и содержат катионы, входящие в состав большинства клинкерных минералов.

В исходных водных суспензиях на дальних расстояниях между частицами преобладают силы притяжения. Наличие вторичного минимума обуславливает тиксотропный режим течения, т.е. наличие предельного динамического напряжения сдвига. Введение определенных концентраций модификатора приводит к уменьшению пластической вязкости до некоторых минимальных значений [4], а динамического напряжения сдвига практически до нуля, при этом наблюдается ньютоновский характер течения суспензии. В таких системах наблюдается равенство сил притяжения и отталкивания между частицами. Дальнейшее увеличение концентрации добавки приводит к дилатантному режиму течения системы, для которой характерно наличие «стесненных» условий и преобладание сил отталкивания. Это может иметь место при повышении дисперсности и устойчивости системы. Превышение сил отталкивания обуславливается в основном образованием развитых адсорбционносольватных слоев.

Изотермы адсорбции СБ-3 на меле, мраморе, кремнеземе и глиноземе имеют типичный характер мономолекулярной адсорбции. При малых равновесных концентрациях наблюдается почти полное извлечение адсорбата из раствора, при дальнейшем увеличении концентрации

модификатора кривая выходит на насыщение и адсорбция достигает своего максимального значения.

Расчет посадочной площадки для молекул СБ-3 показал, что она составляет около 2 нм²/моль. Для молекулы СБ-3, состоящей в среднем из пяти мономерных звеньев, посадочная площадка мономерного звена равна 0,4 нм², что близко к значениям, полученным для модельных олигомерных электролитов, представленным в таблице 1.

Таблица 1 **Адсорбционные параметры мономолекулярного слоя**

Дисперсная	S _{УД.} ,	B/T	δ,	$\Gamma_{\text{max}} 10^7$	См, % от массы дисперсной фазы		S_o ,
фаза	$M^2/K\Gamma$		HM	кг/м ²	Расчетная по	Эксперимен-	нм ² /зв
					данным адсорбции	тальная по данным	
						реологии	
Мрамор	1200	0,40	0,79	8,33	0,102	0,120	0,25
Мел	2000	0,55	0,83	8,80	0,180	0,200	0,23
Кремнезем	240	0,3	0,78	7,72	0,02	0,03	0,27
Глинозем	379	0,63	0,78	7,85	0,03	0,05	0,27

Опыты по отмывке СБ-3 с поверхности мела путем многократной смены растворителя показали, что необратимо сорбируется 80-90% от общего количества адсорбировавшегося суперпластификатора.

При расчете дозировки добавки, необходимой для образования мономолекулярного слоя, нужно учитывать $\Gamma_{\text{мах}}$ и соответствующую ей равновесную концентрацию [4]. Полученные значения $C_{\text{м}}$ приведены в таблице 1.

Как видно из представленных данных, наблюдается удовлетворительное совпадение между дозировкой, рассчитанной по данным адсорбции и оптимальной дозировкой по данным реологии [3,4]. Это свидетельствует о том, что предельная агрегативная устойчивость

наблюдается при полном заполнении адсорбционного слоя. Слабая зависимость параметров адсорбции от кристаллохимического строения свидетельствует, что адсорбция СБ-3 на минеральных поверхностях в значительной степени обусловлена дисперсионным взаимодействием. При СБ-3 ориентируются молекулы параллельно относительно ЭТОМ поверхности, обеспечивая необратимую адсорбцию ИХ 3a счет кооперативного эффекта.

Анионактивные олигомерные добавки, адсорбируясь на поверхности дисперсной фазы, будут увеличивать абсолютное значение отрицательного потенциала поверхности. С другой стороны, по мере формирования адсорбционного слоя граница скольжения будет отодвигаться в глубину раствора, что будет уменьшать абсолютное значение потенциала на границе скольжения. Преобладающая роль этого фактора соответствует относительно небольшим величинам толщины адсорбционных слоев, не превышающим 1 нм, полученным из адсорбционных измерений.

Исходя полученных предполагаемый ИЗ данных, механизм пластифицирующего действия модификатора СБ-3 заключается следующем. Молекулы резорцинформальдегидных олигомеров поверхности адсорбируются на дисперсных частиц, при ЭТОМ гидрофильная часть молекулы ориентирована в раствор. А поскольку гидрофильные группы в олигомерной молекуле расположены регулярно, происходит гидрофилизация поверхности и уменьшение молекулярных сил притяжения. Значительное уменьшение силы взаимодействия между дисперсными частицами приводит К разрушению коагуляционной структуры резкому реологических параметров. изменению Тиксотропность, обусловленная взаимодействием частиц, практически исчезает.

Работа выполнена в рамках научного проекта № 14-41-08015 р_офи_м при финансовой поддержке РФФИ и Правительства Белгородской области.

Литература:

- 1. Ломаченко В.А. Суперпластификатор для бетона СБ-3. / В.А. Ломаченко // В кн. Физико-химия строительных материалов. Белгород: 1983. С. 6-12.
- 2. Ломаченко В.А. Изучение адсорбционных и реологических свойств сырьевых материалов с добавкой СБ-3 / В.А. Ломаченко, Л.И. Яшуркаева, О.В. Яшуркаев // Успехи современного естествознания. 2008. №9. С. 123-124.
- 3. Ломаченко Д.В. Исследование адсорбции СБ-3 на поверхности частиц CaCO₃ / Д.В. Ломаченко, С.М. Ломаченко // Перспективные инновации в науке, образовании, производстве и транспорте 2012: Междунар. научно-практ. Интернет-конф. Украина: SWorld, 18-27 дек.2012 [электр. ресурс].
- 4. Полуэктова В.А. Коллоидно-химические свойства водных дисперсий мела и мрамора / В.А. Полуэктова, В.А. Ломаченко, З.В. Столярова, С.М. Ломаченко, В.М. Малиновкер // Фундаментальные исследования. 2014. № 9 (часть 6). С. 1205-1209.

Literature:

- 1. Lomachenko V.A. Superplasticizer for concrete SB-3. Physical chemistry of building materials. Belgorod: 1983. p.6-12.
- 2. Lomatschenko V.A., Yashurkaeva L.I., Yashurkaev O.V. Study of the adsorption and the rheological properties of raw materials with the addition of SB-3 // The successes of modern natural science. 2008. №9. p. 123-124.

- 3. Lomachenko D.V., Lomachenko S.M. Study of adsorption of SB-3 on the surface of the CacO₃//Advanced innovations in science, education, production and transport 2012: Internet Scientific Conference Ukraine: SWorld, 18-27 Dec. 2012 [internet source].
- 4. V.A. Poluektova, V.A. Lomachenko, Z.V. Stolyarova, S.M. Lomachenko, V.M.Malinovker. Colloid-chemical properties of water dispersions of chalk and marble//Fundamental researches. No. 9 2014 (part 6). p. 1205-1209.