
International Scientific Journal “Internauka” http://www.inter-nauka.com/ 

International Scientific Journal “Internauka” http://www.inter-nauka.com/ 

Technical sciences 

УДК 004.021:004.93 

Nikolaiev Sergii 

Ph.D. student 

National Technical University of Ukraine  

“Igor Sikorsky Kyiv Polytechnic Institute” 

Chereda Hryhorii 

Master’s student 

National Technical University of Ukraine  

“Igor Sikorsky Kyiv Polytechnic Institute” 

 

SAMPLING RATE INDEPENDENT FILTRATION APPROACH FOR 

AUTOMATIC ECG DELINEATION 

 

Summary: In this paper different types of ECG automatic delineation 

approaches were overviewed. A combination of these approaches was used to 

create sampling rate automatically adaptive filtration approach for ECG 

delineation that is capable of distinguishing different morphologies of T and P 

waves and QRS complexes. 
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I. INTRODUCTION  

The healthcare industry is now on the cusp of disruptive changes and the 

new technologies are being developed will truly alter the way how the medical 

care is provided to the patients. The medicine in the 21st century will be 

functioning in the framework of a fundamentally new P3 paradigm: predictive, 

preventive and personalized medicine (PPPM). This means that the healthcare 

will become proactive but not reactive and medical sensors become ubiquitous, 
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the streams of bio-data available to clinicians will completely overwhelm their 

ability to understand this amount of information and react in real time. To deal 

with this “ocean of bio-signals” (Big Data), we need to develop fast and reliable 

automatic signal processing algorithms that can adapt to the peculiarities of 

individual person. [1] 

Nowadays the cardio vascular diseases are the major cause of death and 

because of that more and more businesses every year create smart-garments that 

measure electrocardiogram (ECG) in daily life. These garments require ECG 

automatic real-time analysis and heart pathologies detection software.  

So, we may state the importance of automatic ECG signal processing and 

analysis tools development. These tools contain several stages of information 

processing like raw analog signal noise reduction, digitized signal filtering, 

digitized ECG delineation for marking of P, T waves and QRS complexes 

(heartbeats), time- and amplitude- and frequency-based feature retrieval, 

machine-learning or rule based approaches for pathology detection and 

prediction. [2] 

The paper is organized as follows: in Section II, we focus on the overview 

of the ECG automatic delineation algorithms. The usage of continuous wavelet 

transform (CWT) filtration with automated adaptation for different sampling 

rates is described in Section III instead of the use of the stationary wavelet 

transform (SWT) for the input ECG signal delineation. The obtained results of 

our approach and comparison with SWT method are discussed in Section IV. 

Finally, the conclusions are presented in Section V.  

II. DELINEATION ALGORITHMS OVERVIEW 

All delineation algorithms can be divided into two major groups: those 

that detect only QRS complexes peaks and wave delineation algorithms that find 

all peaks including full marking of P and T waves. 
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One the most famous examples from the first group is Pan-Tompkins 

approach [3]. It is used to find R-peak position on the raw ECG signal by 

calculating adaptive thresholds.  

We consider the second type of algorithms, where determination of P- and 

T-waves is performed after the determination of the location of QRS complexes. 

We can name Chesnokov [4] and Laguna [5] approaches as the great examples 

of such algorithms. But even their methods are not ideal. 

Chesnokov ECG delineator uses CWT that performs the filtration of 

digitized ECG signal equally good for given wavelet analyzing frequencies 

regardless of the ECG sampling rate. 

One of the drawbacks of the approach is that the proposed architecture 

cannot automatically determine whether the T-wave is biphasic. This parameter 

can be optionally set by the user before starting the delineator, but it requires a 

prior knowledge from the user about the analyzed ECG. Also this approach 

cannot differentiate between ascending and descending T-waves.  

Laguna delineator approach allows the annotation of ECG waves for any 

configuration of P- and T- waves and QRS-complexes. But the main drawback 

is that filters used in SWT (algorithme à trous [5]) need to be individually tuned 

for ECG signals recorded with different sampling rates. 

Our goal is to combine these two approaches to create sampling rate 

independent filtration approach for automatic ECG delineation that is capable of 

recognizing biphasic, ascending and descending T-waves. 

III. METHODS DESCRIPTION  

The ECG signal consists of different parts: complexes (heartbeats ranges) 

and waves (like P- and T-waves). Physicians use them to determine heart 

pathologies. The waves contain various spectral components which appear at 

certain moments of time that can be automatically analyzed. To analyze these 

components in the time-frequency representation special tools and approaches 

are used. 
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One well-known approach is short time Fourier transform (STFT) [6]. The 

main idea is to apply Fourier transform to parts of the signal (called windows) 

where the signal appears to be stationary. But the biggest challenge for this 

approach is to find optimal window width. To overcome this problem the 

wavelet transform (WT) approach is used in recent years. This approach 

implements the decomposition of non-stationary signal on the basis obtained by 

compression and displacement of a function (prototype wavelet). According to 

[7] a good selection of parent wavelet will allow to obtain a satisfactory 

resolution for both time and frequency domains.  

Formally continuous wavelet transform can be represented as a function 

of two variables: 

1
( , ) ( ) ( )xT a x t t dt

a
,          (1)

 

where a  is a scale, ( )t  - prototype wavelet, ( )x t  is the signal. It can be 

considered as inner product in 2( )L R  (space of square-integrable functions, 

defined on the real axis) and as a mutual correlation of the signal and the 

wavelet. The larger scale – the lower frequency f is extracted by the CWT, f~1/a. 

Parameter  – offset of the wavelet. The asterisk defines a complex conjugation 

of the wavelet. 

Equation (1) could give the impression that an exact value of the signal 

frequency can be extracted at a certain moment of time. However, taking into 

account a broad interpretation of Heisenberg uncertainty principle, in general 

case this conclusion is not true. From this principle the fact follows - it is 

impossible to determine which harmonic signal components are present in a 

fixed time, you can only get an idea of a certain frequency range at a certain 

time interval. 

If prototype wavelet ( )t  is the derivative of some smoothing function 

( )t then CWT of signal ( )x t  at scale a is [8]: 
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( , ) ( ) ( )x a

d
T a a x t t dt

d
,      (2) 

where ( ) (1/ ) ( / )a t a t a  is the scaled version of the smoothing function. 

The CWT at fixed scale a is proportional to the derivative of the filtered signal 

with a smoothing function ( )a t . Zero-crossings of the WT correspond to the 

local maxima or minima of the smoothed signal at different scales, and the 

maximum absolute values of the wavelet transform are associated with 

maximum slopes in the filtered signal. A quadratic spline wavelet which is a 

derivative of a smoothing function is used in this work. 

IV. DEPENDENCY BETWEEN FREQUENCY, SAMPLING 

RATE AND SCALE 

Fixed scale CWT extracts certain interval of frequency components at the 

fixed sampling rate. The principal frequency f at a fixed scale a analyzed by 

CWT is proportional to the sampling rate sr. These values are bounded by the 

following equation: 

  /c rf f s a       (3) 

To obtain the equality, we need to find a constant value fc. For a certain 

wavelet at fixed scale a this constant equals to the frequency, where Fourier 

spectrum of the wavelet reaches its maximum. We established that fc = 0.2685 

for quadratic spline wavelet: 
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and fc = 0.16 for derivative of a Gaussian smooth function. 

2 /2( ) .xx xe      (5) 
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The scale a and the offset  of the wavelet can be discretized. This allows 

us to use the main idea of discrete wavelet transform (DWT) - decomposition of 

the 2( ) ( )y t L R  in approximating and detailing parts ( 2 j Z  represents the 

scale factor): 

1 , , , ,( ) ( ) ( )j j k j k j k j k

k Z k Z

y t a t d t ,   (6) 

where , ( ) 2 (2 )j j

j k t t k  - is the scale function;
 , ( ) 2 (2 )j j

j k t t k – 

wavelet function.  

The DWT can be implemented by passing the discrete time signal through 

a high pass and a low pass filters. The original signal can be obtained through 

the reconstruction filter bank. 

The authors in [5] have used the analysis filter bank based on quadratic 

spline wavelet (4) in SWT: 

[ ] 1/ 8 { [ 2] 3 [ 1] 3 [ ] [ 1]}

[ ] 2 { [ 1] [ ]}.

h n n n n n

g n n n    (7)
 

The equivalent frequency response for the filters in SWT for k-th scale is 

1 22 2
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   (8) 

where ( )jwH e , ( )jwG e are the frequency responses of filters (8) 

/2 3

/2

( ) (cos )
2

( ) 4 (sin ).
2

j j

j j

H e e

G e je

        (9) 

The filter bank (7) was used in [5] with the sampling frequency equal to 

250 Hz. For the adaptation to other sampling rates, the authors in [5] adequately 

resample the equivalent filter impulse responses at 250 Hz to other sampling rate 

values. But this procedure is time-consuming and can’t be done automatically 

for all sampling rates. 
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Main SWT scales in [5] were 2
1
, 2

2
, 2

3
, 2

4
, 2

5
 at 250 Hz sampling rate. We 

should get values of the fixed frequencies, which analyzed by quadratic spline 

wavelet on those scales at 250 Hz sampling rate. After that we will generalize 

them into other sampling rates. 

Let’s define frequencies which are mainly analyzed by SWT filters (7) at 

scales 2
1 

- 2
5
. Each of these frequencies corresponds to the point, where the 

maximum of the SWT frequency response (8) is achieved (Fig. 1). After that we 

put the found frequency value to the Table 1. The scale a can be defined as a 

function of sampling rate sr from (3): 

( ) /r r ca s s f f .     (10) 

By this way we obtain an adaptation for the scale for any sampling rate at 

fixed frequency f mainly analyzed by the wavelet. 

 Table 1 

Obtained Frequencies for Given Scales 

Scale, k Frequency f, Hz 

2
1 

125 

2
2 

36.90 

2
3
 17.17 

2
4
 8.43 

2
5
 4.21 

 

Proposal. We propose to use CWT with recalculation of the scale factor 

according to (10) at fixed frequencies from Table 1 instead of the use SWT 

which could not be automatically adjusted to different sampling rates. 

Let’s compare the CWT frequency response and the frequencies responses 

from SWT filters (8). For this purpose we compute Fourier spectrum of the 

wavelet (4) assuming that the wavelet’s scale was recalculated in accordance 

with (10). The frequency responses of the wavelet (4) and filters (8) at k-th scale 

are denoted respectively as ( )kQ f  and ( )k f  (Fig. 1). 
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Fig 1. Comparison of frequency responses for SWT and CWT based filtration at different scales.  

The Figure 2 presents the Chebyshew error of processed ECG signals in 

time domain that were normalized. As for the scale 2
1
, we also have a good 

approximation at sr  > 250 Hz (see Fig. 2 below).  

 

Fig 2. Wavelet transforms and their error at scale 2
1
, 2

3
, 2

5
. 
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It can be observed that the frequency responses of the quadratic spline 

wavelet with scales recalculated by (10) constitute precise approximation of the 

original filters up to a frequency of 125 Hz. 

V. RESULTS 

The SWT and CWT methods were applied to ECG signals with 250 Hz 

sampling rate. Tests were performed on sell100.dat file from QTDB [9]. We 

denote signals obtained at a fixed scale 2
k
 by the SWT and CWT (for CWT the 

scale and corresponding frequency are taken from Table 1) as Qk[n] and Tk[n] 

respectively. The CWT and SWT methods were compared using of Chebyshev 

error: 

1,

max | [ ] [ ]| .k k k
i N

e Q i T i         (11) 

But before calculating errors in (11), the signals filtered by CWT and 

SWT must be normalized in the range of [-1, 1]. For signal x[n]: 

[ ] min( )
[ ] 2 1, 1..

(max( ) min( ))

x i x
x i i N

x x
                       (12) 

The results of comparison can be observed in Table 2 and Figure 2. 

Table 2 

Chebyshev errors at different scales 

Scale, k Error 

2
1 

0.50 

2
2 

0.35 

2
3
 0.27 

2
4
 0.16 

2
5
 0.086 

 

According to Table 2, CWT deviates from SWT at scale 2
1
. As we can see 

from the Fig. 2, the most significant errors are present at spikes of the CWT, but 

in general, approximation could be interpreted as satisfactory for 125 Hz and 

250 Hz sampling rates. 
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For the third scale 2
3
 and the fifth 2

5
 the obtained approximation is better 

(Fig. 2). The errors on spikes are decreasing at bigger scales. At the fifth 2
5
 scale 

we have almost perfect approximation.  

Scales 2
1
, 2

2
, 2

3
, 2

4 
are relevant for calculating the thresholds in [5] that 

define the existence of QRS complex. 

Despite of obtained deviations between CWT and SWT at the QRS 

complexes locations at scales 2
1
 and 2

2
 these errors are irrelevant for finding 

positive maximum and negative minimum pairs (so called maximum modulus 

lines [5]) on the CWT and SWT graphs (Fig. 2) because maximum modulus 

lines and (2) guarantees zero crossing of WT with OX axis at local maxima or 

minima on the ECG signal. 

Scales 2
4
 and 2

5
 are used for P, T waves delineation. As for these scales, 

we obtained a good approximation. More significant Chebyshev error appears at 

QRS complex location, which is not involved in P and T wave delineation. In 

this case, there is no need to change the delineation thresholds in Laguna 

algorithm. 

VI. CONCLUSION  

In this paper the approach for signal filtering in the ECG automatic 

delineation problem was researched. 

A combination of Chesnokov and Laguna approaches was used to create 

sampling rate independent filtration algorithm for automatic ECG delineation 

that is capable of distinguishing different morphologies of T and P waves and 

QRS complexes.  

The algorithm accuracy was investigated for different wavelet scales and 

despite of relatively valuable Chebyshev error between CWT and SWT it had no 

significant influence on the ECG delineation precision.  

It was shown that continuous wavelets transform with automatic 

adaptation for different sampling rates can be used instead of stationary wavelet 

transform for the delineation problem.  
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