
International Scientific Journal http://www.inter-nauka.com/

International Scientific Journal http://www.inter-nauka.com/

Technical sciences

УДК 004.43

SUTULA ALEXANDER

student

National Technical University of Ukraine “Kiev Polytechnic Institute”

FUNCTIONAL REACTIVE PARADIGM ADVANTAGES FOR

ANDROID DEVELOPMENT

Summary: This article describes conceptual difference between imperative,

reactive paradigms and functional reactive style advantages in Android

development. Solutions of imperative paradigm main problems are described.

Key words: Android, functional reactive paradigm

Today mobile applications development involves using the Java as

primary programming language which is based on imperative paradigm.

Imperative programming is programming paradigm, where algorithm is

described as a sequence of instructions that change program state. Assigning,

which is intensively used in imperative paradigm, increases the difficulty of

computing models and assumes in vulnerability to errors accompanied by

objects state changes that are extremely difficult to trace.[1] Also, because of the

condtinuous changing states, with multithreading processing flow, locks, etc.

must be used. In addition, due to probable external states changes in a function,

this has to be checked, along with the usual test of the output values of the

function.

Android application should provide fault tolerance at work in terms of

volatility internet connection, limited device memory, etc. So, in the foreground

comes errors processing, such as lost connections, server unavailability problem

with converting JSON in pojo, incorrect caching. Imperative paradigm forces

International Scientific Journal http://www.inter-nauka.com/

International Scientific Journal http://www.inter-nauka.com/

creation of additional objects and error handlers. That leads to code size increase

and thus creates the threat of mistakes. [2]

When requests based on the existing are created, arise problems

associated with the interaction of these two requests and application structure

complexity raising by adding new classes and abstractions that handle bugs.

Alternatively, it is possible to use a combination of reactive and functional

programming paradigms.

Functional programming - paradigm, which considers the program as

calculating mathematical functions and avoids states and variable data.

Functional programming is focused on the using functions, as opposed to

changes in the condition and performance of sequences of commands.

This approach offers several advantages, including:

- Сode reliability improvement. The advantage computing without

conditions - code safety increase by clear structuring and makes side effects

tracking unnecessary. Any function works only with local data and performs

same way, regardless of where it is called. Data mutation exclusion eliminates

some errors that are hard to detect (such as random assignment incorrect value

in the global variable in imperative program);

- Parallelism capabilities. Functional programs provide the greatest

possibilities for computations automatic parallelization. No side effects are

guaranteed, so parallel function call for different parameters calculation is

always permissible- calculation order cannot influence call output;

- Simplicity of unit testing construction. Because the function in

functional programming does not produce side effects, objects won’t be

modified both inside and outside scope (as opposed to imperative programs

where one function can set any external variable that will be read by another

function). The only effect from calculation of the function is returned result,

which can be affected only by the outcome - the arguments value. Therefore,

testing every feature can be lead to calculating it for different arguments sets and

International Scientific Journal http://www.inter-nauka.com/

International Scientific Journal http://www.inter-nauka.com/

there cannot be affected by functions call order or external conditions. Function

passing unit test guarantee the quality of the program. [3]

Reactive programming - programming paradigm based on the concepts of

functional programming and oriented data streams and the propagation of

change.

Reactive programming has foremost been proposed as a way to simplify

interactive user interfaces, animations, in real time systems development. It

allows entering and managing parallelism for program optimization. The

paradigm is based on four principles: fault tolerance, changes sensitivity,

flexibility and scalability.

Most Android application are based on permanent interaction with the

user. Implementing reactive approach and functional programming in the

development process increases application transparency, code readability and

helps avoid errors associated with the program states and division into streams.

[4]

The ability to use functional paradigm partially appeared in Java version

8, which currently is not supported by Dalvik JVM, and therefore can not be

used to develop Android application. [4]

RXJava framework provides functional reactive paradigm for application

development. It enables creating asynchronous systems based on processing

events. Written in Scala and uses its tools. The framework provides ability

develop distributed application services without the locks, synchronization or

multithreading security concepts, applying reactive functional declarative style.

And, key framework feature becomes classes and wrappers set for convenient

Android application development, such as:

1. Sheduler, which plans and oversees the launch and implementation

processes on different flows.

2. Operators to facilitate the Activity and Fragments, multiple callbacks

for tracking their life cycle.

International Scientific Journal http://www.inter-nauka.com/

International Scientific Journal http://www.inter-nauka.com/

3. Wrappers for all messages and notifications, allowing them to combine

all calls.

Unlike classical (imperative) developing, a Java application framework RXJava

provides compliance with the four reactive programming basic principles:

1. The fault tolerance principle: all transactions results are always

predictable. Potential problem areas and possible errors are known, what

facilitate processing them.

2. The sensitivity principle: the database or server connection is protected

from failure due to timeout, in case of problem request will be repeated several

times and then will return result of caching.

3. The event orientation principle: during the request execution and

processing results, the program always responds to events: inquiry successful /

unsuccessful completion, handling outcome end. In addition, there is the option

to subscribe several methods on one Observable and keep a consistent state of

the whole system.

4. The scalability principle: adding new functionality does not require

previous code changes. Convenient login errors, saving stacktrace, filter results,

and so on is provided.

RXJava framework used for projects written in Java, with Scala

abstraction and classes, extends Java, by adding additional features of functional

languages, but also leads to code size and complexity increasing. Combining

RXJava framework and Java language does not provide full functional paradigm

support. For aforementioned problems avoidance usage Scala language with this

framework is suggested. [4]

Scala - multiparadigm programming language combining the properties of

object-oriented and functional paradigms. Scala provides all Java features and

adds modern abstraction such as trait, implicit, type-checked null, block, pattern

matching, monads. Since version 2.11 Scala needs at least Java 6 version. It`s

International Scientific Journal http://www.inter-nauka.com/

International Scientific Journal http://www.inter-nauka.com/

suitable for conversion into acceptable Dalvik bytecode. Therefore, pure Scala

cannot be used in Android projects.

Scala provides ability to build strictly typed model (Domain Speccific

Language - DSL) to adapt to each subject area and express it into language

structures. Macroid is Scala DSL for developing Android applications.

Macroid DSL solved number of structural Android classical architecture

interfaces problems:

- Excess files in the project – arising while each layout being stored in a

separate file;

- Lack namespace arising because of layouts storage features in a single

directory;

- Models duplication for different screen sizes adapting.

Macroid solves XML markup problem by describing the layout with Scala

code that eliminates modularity and division into separate files. Media queries

solve breakdown interfaces problem for different screen sizes, devices

configurations.

Macroid also adds new abstractions such as: Tweak, media queries,

Actions, Snails, which provides:

- High-level abstraction. Extraction common parts due to Tweak and

standard widgets;

- Safe Context use. Owing to the AppContext and ActivityContext

separation, which are received and shipped separately. AppContext storage in

Macroid remains unchanged, and ActivityContext will be stored in

WeakReference. This solves the problem of memory leaks.

- Threadsafety. Using Macroid UI action wrappers to work with the

interface. UI action declares actions combination and method calls sequence for

each stream separately.

- Creating complex animations. Animation management using abstraction

Snails.

International Scientific Journal http://www.inter-nauka.com/

International Scientific Journal http://www.inter-nauka.com/

Conclusion: the basic advantages of functional reactive paradigm for

Android projects, in comparison to the imperative paradigm, were reviewed.

Solutions imperative paradigm main problems have been considered. Main tools

for implementation functional paradigm namely: RXJava framework, Scala

were investigated. Framework RXJava in Android projects can be used with

Java, and with Scala. Combining Scala and RXJava solves the problem of

excess abstractions and classes, provides the ability to use previously

unavailable tools, such as DSL, which significantly increases the effectiveness

of the program, as well as the reliability of code, eliminates some fundamental

problems of Android development. This implementation allows succinctly

process exceptional situations arising in unstable conditions device usage and

build a scalable structure of application-oriented events. Functional reactive

paradigm enable developing flexible and failsafe user interfaces for Android

applications.

References:

1. An introduction to functional programming through lambda calculus /

Greg Michaelson - New York : Dover Publications, Inc., 2015. - 309 p.

2. Android Programming: The Big Nerd Ranch Guide (2nd Edition) / Bill

Phillips, Chris Stewart, Brian Hardy, Kristin Marsicano - Atlanta : Big Nerd

Ranch, 2015. - 600 p.

3. Couchbase Server 3.0/3.1 Developer Guide & Older SDKs [Electronic

resource]. – http://docs.couchbase.com/developer/java-2.0/observables.html

4. Macroid Documentation [Electronic resource]. –

http://macroid.github.io

http://www.amazon.com/Bill-Phillips/e/B00C9F7BHE/ref=dp_byline_cont_book_1
http://www.amazon.com/Bill-Phillips/e/B00C9F7BHE/ref=dp_byline_cont_book_1
http://www.amazon.com/Bill-Phillips/e/B00C9F7BHE/ref=dp_byline_cont_book_1
http://www.amazon.com/Chris-Stewart/e/B0153Q51EA/ref=dp_byline_cont_book_2
http://www.amazon.com/s/ref=dp_byline_sr_book_3?ie=UTF8&text=Brian+Hardy&search-alias=books&field-author=Brian+Hardy&sort=relevancerank
http://www.amazon.com/s/ref=dp_byline_sr_book_4?ie=UTF8&text=Kristin+Marsicano&search-alias=books&field-author=Kristin+Marsicano&sort=relevancerank
http://docs.couchbase.com/developer/java-2.0/observables.html
http://docs.couchbase.com/developer/java-2.0/observables.html
http://macroid.github.io/
http://macroid.github.io/
http://macroid.github.io/

